- 110.50 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时跟踪检测(四十七) 两条直线的位置关系
一、题点全面练
1.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2过定点( )
A.(0,4) B.(0,2)
C.(-2,4) D.(4,-2)
解析:选B 由题知直线l1过定点(4,0),则由条件可知,直线l2所过定点关于(2,1)对称的点为(4,0),故可知直线l2所过定点为(0,2),故选B.
2.若点P在直线3x+y-5=0上,且P到直线x-y-1=0的距离为,则点P的坐标为( )
A.(1,2) B.(2,1)
C.(1,2)或(2,-1) D.(2,1)或(-1,2)
解析:选C 设P(x,5-3x),则d==,化简得|4x-6|=2,即4x-6=±2,解得x=1或x=2,故P(1,2)或(2,-1).
3.已知直线l的倾斜角为,直线l1经过点A(3,2)和B(a,-1),且直线l与l1平行,则实数a的值为( )
A.0 B.1
C.6 D.0或6
解析:选C 由直线l的倾斜角为得l的斜率为-1,
因为直线l与l1平行,所以l1的斜率为-1.
又直线l1经过点A(3,2)和B(a,-1),
所以l1的斜率为,故=-1,解得a=6.
4.(2018·北京东城区期末)如果平面直角坐标系内的两点A(a-1,a+1),B(a,a)关于直线l对称,那么直线l的方程为( )
A.x-y+1=0 B.x+y+1=0
C.x-y-1=0 D.x+y-1=0
解析:选A 因为直线AB的斜率为=-1,所以直线l的斜率为1.设直线l的方程为y=x+b,由题意知直线l过点,所以=+b,解得b=1,所以直线l的方程为y=x+1,即x-y+1=0.故选A.
5.已知点P(-2,0)和直线l:(1+3λ)x+(1+2λ)y-(2+5λ)=0(λ∈R),则点P到直线l的距离d的最大值为( )
A.2 B.
C. D.2
解析:选B 由(1+3λ)x+(1+2λ)y-(2+5λ)=0,得(x+y-2)+λ(3x+2y-5)=0,此方程是过直线x+y-2=0和3x+2y-5=0交点的直线系方程.解方程组可知两直线的交点为Q(1,1),故直线l恒过定点Q(1,1),如图所示,可知d=|PH|≤|PQ|=,即d的最大值为.
6.已知直线l1:ax+y-1=0,直线l2:x-y-3=0,若直线l1的倾斜角为,则a=________;若l1⊥l2,则a=________;若l1∥l2,则两平行直线间的距离为________.
解析:若直线l1的倾斜角为,则-a=k=tan=1,故a=-1;若l1⊥l2,则a×1+1×(-1)=0,故a=1;若l1∥l2,则a=-1,l1:x-y+1=0,两平行直线间的距离d==2.
答案:-1 1 2
7.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.
解析:由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,于是解得
故m+n=.
答案:
8.以点A(4,1),B(1,5),C(-3,2),D(0,-2)为顶点的四边形ABCD的面积为________.
解析:因为kAB==-,kDC==-.
kAD==,kBC==.
则kAB=kDC,kAD=kBC,所以四边形ABCD为平行四边形.
又kAD·kAB=-1,即AD⊥AB,
故四边形ABCD为矩形.
故S四边形ABCD=|AB|·|AD|=×=25.
答案:25
9.正方形的中心为点C(-1,0),一条边所在的直线方程是x+3y-5=0,求其他三边所在直线的方程.
解:点C到直线x+3y-5=0的距离d==.
设与x+3y-5=0平行的一边所在直线的方程是
x+3y+m=0(m≠-5),
则点C到直线x+3y+m=0的距离
d==,
解得m=-5(舍去)或m=7,
所以与x+3y-5=0平行的边所在直线的方程是
x+3y+7=0.
设与x+3y-5=0垂直的边所在直线的方程是
3x-y+n=0,
则点C到直线3x-y+n=0的距离
d==,解得n=-3或n=9,
所以与x+3y-5=0垂直的两边所在直线的方程分别是3x-y-3=0和3x-y+9=0.
10.已知点P(2,-1).
(1)求过点P且与原点的距离为2的直线l的方程;
(2)求过点P且与原点的距离最大的直线l的方程,并求出最大距离;
(3)是否存在过点P且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.
解:(1)过点P的直线l与原点的距离为2,而点P的坐标为(2,-1),显然,过点P(2,-1)且垂直于x轴的直线满足条件,此时l的斜率不存在,其方程为x=2.
若斜率存在,设l的方程为y+1=k(x-2),
即kx-y-2k-1=0.
由已知得=2,解得k=.
此时直线l的方程为3x-4y-10=0.
综上可得直线l的方程为x=2或3x-4y-10=0.
(2)作图可得过点P与原点O的距离最大的直线是过点P且与PO垂直的直线,如图.
由l⊥OP,得kl·kOP=-1,
因为kOP=-,
所以kl=-=2.
由直线方程的点斜式得y+1=2(x-2),
即2x-y-5=0.
所以直线2x-y-5=0是过点P且与原点O的距离最大的直线,最大距离为=.
(3)由(2)可知,过点P不存在到原点的距离超过的直线,因此不存在过点P且到原点的距离为6的直线.
二、专项培优练
(一)易错专练——不丢怨枉分
1.(2019·青岛模拟)直线x+a2y+6=0和(a-2)x+3ay+2a=0无公共点,则a的值为( )
A.3或-1 B.0或3
C.0或-1 D.-1或0或3
解析:选C 两直线无公共点,即两直线平行.当a=0时,这两条直线分别为x+6=0和x=0,无公共点;当a≠0时,由-=-,解得a=3或a=-1.若a=3,这两条直线分别为x+9y+6=0,x+9y+6=0,两直线重合,有无数个公共点,不符合题意,舍去;若a=-1,这两条直线分别为x+y+6=0和3x+3y+2=0,两直线平行,无公共点.综上,a=0或a=-1.
2.已知A(1,2),B(3,1)两点到直线l的距离分别是,-,则满足条件的直线l共有( )
A.1条 B.2条
C.3条 D.4条
解析:选C 当A,B两点位于直线l的同一侧时,一定存在这样的直线l,且有两条.又|AB|==,而点A到直线l与点B到直线l的距离之和为+-=,所以当A,B两点位于直线l的两侧时,存在一条满足条件的直线.综上可知满足条件的直线共有3条.故选C.
3.l1,l2是分别经过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是____________________.
解析:当两条平行直线与A,B两点连线垂直时,两条平行直线间的距离最大.因为A(1,1),B(0,-1),所以kAB==2,所以当l1,l2间的距离最大时,直线l1的斜率为k=-,此时,直线l1的方程是y-1=-(x-1),即x+2y-3=0.
答案:x+2y-3=0
4.若直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l
的方程为______________________.
解析:当直线l的斜率存在时,设直线l的方程为y-2=k(x+1),即kx-y+k+2=0.
由题意知=,
即|3k-1|=|-3k-3|,∴k=-.
∴直线l的方程为y-2=-(x+1),即x+3y-5=0.
当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意.
答案:x+3y-5=0或x=-1
5.在平面直角坐标系中,已知点P(-2,2),直线l:a(x-1)+b(y+2)=0(a,b∈R且不同时为零),若点P到直线l的距离为d,则d的取值范围是________.
解析:易知直线l经过定点(1,-2),则点P到直线l的最大距离为=5,最小距离为0,所以d的取值范围是[0,5].
答案:[0,5]
(二)交汇专练——融会巧迁移
6.[与导数交汇]若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小距离为( )
A. B.1
C. D.2
解析:选C 因为点P是曲线y=x2-ln x上任意一点,所以当点P处的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小.因为直线y=x-2的斜率等于1,曲线y=x2-ln x的导数y′=2x-,令y′=1,可得x=1或x=-(舍去),所以在曲线y=x2-ln x上与直线y=x-2平行的切线经过的切点坐标为(1,1),所以点P到直线y=x-2的最小距离为,故选C.
7.[与不等式交汇]如图,已知直线l1∥l2,点A是l1,l2之间的定点,点A到l1,l2之间的距离分别为3和2,点B是l2上的一动点,作AC⊥AB,且AC与l1交于点C,则△ABC的面积的最小值为________.
解析:以A为坐标原点,平行于l1的直线为x轴,建立如图所示的平面直角坐标系,设B(a,-2),C(b,3).
∵AC⊥AB,∴ab-6=0,ab=6,b=.
Rt△ABC的面积S=·
=· =
≥=6(当且仅当a2=4时取等号).
答案:6
8.[与物理知识交汇]如图,已知A(-2,0),B(2,0),C(0,2),E(-1,0),F(1,0),一束光线从F点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为________.
解析:从特殊位置考虑.如图所示,∵点A(-2,0)关于直线BC:x+y=2的对称点为A1(2,4),∴=4.又点E(-1,0)关于直线AC:y=x+2的对称点为E1(-2,1),点E1(-2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,∴kFD>,即kFD∈(4,+∞).
答案:(4,+∞)