- 361.50 KB
- 2021-10-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
辅导教案
学员姓名: 学科教师:
年 级: 辅导科目:
授课日期
××年××月××日
时 间
A / B / C / D / E / F段
主 题
全等三角形的性质与判定(二)
教学内容
1. 掌握全等三角形的判定定理2、3、4,并能应用四种判定说明两个三角形全等;
2. 能够综合运用各种判定方法来证明线段和角相等;
(以提问的形式回顾)
1. 全等三角形判定方法2:在两个三角形中,如果有两个角及它们的夹边对应相等,那么这两个三角形全等(简记为A.S.A)
2. 全等三角形判定方法3:在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等(简记为 A.A.S)
3. 全等三角形判定方法4:在两个三角形中,如果有三条边对应相等,那么这两个三角形全等(简记为:S.S.S)
小练习:
1.如图,∠A = ∠D,∠ABC = ∠DCB,则ΔABC≌ΔDCB,依据是
2.如图,在ABC中,AB = AC,AD是BC边上的中线,则ΔABD≌ΔACD,则ΔABD
≌ΔACD的依据是
3.如图,已知AB = BD,请你再附加一个条件, 使ΔABC≌ΔDBC,其理
是
4.如图,AB = CD,BC = AD,∠ABD = 40°,则∠BDC = °
第4题图 第5题图 第6题图
5.如图,AB = AC,∠B = ∠C,则ΔABE ≌ΔACD的依据是
6.如图,在ΔABC中,AB = AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中
全等的三角形共有 对
7.如图,AD⊥BC,∠B = ∠C,BC = 10厘米,则BD = 厘米
第7题图 第8题图
8.有A、B、C三个三角形,其中全等的两个三角形是
9.如图,BD = CE,∠D = ∠E,点A是DE的中点,AB = 10 厘米,则AC = 厘米
10.如图,在ΔABC中,AB = 10厘米,AC = 6厘米,DE是BC的垂直平分线,分别交
AB、BC于D、E,则ΔADC的周长是 厘米
参考答案:1、AAS 2、SSS 3、AC = DC、SSS 4、40 5、ASA
6、3 7、5 8、A与C 9、10 10、16
(采用教师引导,学生轮流回答的形式)
例1. 如图,在△ABC中,∠C=90°,点D是AB上一点,DM⊥AB,DE=BC,过点M作ME∥BC交AB于点E,求证:DM=AC。
解析:ME∥BC可得∠B=∠DEM,所以△ABC≌△MED(ASA),所以DM=AC。
试一试:如图,在△ABC中,∠ABC=∠ACB,BD,CE分别是∠ABC,∠ACB的平分线,求证:BD=CE
解析:△EBC≌△DCB(ASA),所以BD=CE。
例2. 如图,在ΔABC中,已知AD⊥BC,CE⊥AB,且CF = AB,求证:AD = CD
解析:根据同角的余角相等,可得∠BAD=∠FCD(或∠B=∠CFD),再证明△ABD≌△CFD(AAS),所以AD = CD。
试一试:如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B。
求证:AB=DE
解析:根据AC∥DE,∠ACD=∠B,可得∠ACB=∠E,∠B=∠D,再证明△ABC≌△EDC(AAS),所以AB=DE。
例3. 如图,已知AB=CD,AC=DB,求证:∠ABO=∠DCO
解析:证明△ABC≌△DCB(SSS),可得∠ABC=∠DCB,∠ACB=∠DBC,根据等式性质可得∠ABO=∠BCO。
试一试:如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠B=∠D
解析:联结AC,证明△ABC≌△ADC(SSS),可得∠B=∠D。
(学生统一完成,互相批改,教师针对重难点详细讲解)
1.如图,AC、BD相交于点O,AB = CD,请你补充一个条件,使得ΔAOB≌ΔCOD,你补充的条件是
第1题图 第2题图 第3题图
2.如图,AB = CD,AE = DF,若增加条件 或 可判定ΔABF≌ΔDCE
3.如图,AB = DC,AC = DB,图中全等三角形共有 对
4.如图,AB = AC,CD⊥AB,BE⊥AC,则CD =
第4题图 第5题图 第6题图
5.如图,∠1 = ∠2,AB = AC,∠ABC = 70°,则∠BAO = °
6.如图,在ΔABC中,AB = AC,∠A = 80°,且BD = CE,CD = BF,则∠EDF = °
7.在ΔMNP中,Q是MN的中点,PQ⊥MN,那么下列结论正确的个数是 ( )
① ΔMPQ≌ΔNPQ ② MP = NP
③ ∠MPQ = ∠NPQ ④ MQ = NP
A、4个 B、3个 C、2个 D、1个
8.下列语句中,正确的个数是 ( )
① 两个等边三角形是全等三角形
② 各有一个角是30°的两个直角三角形是全等三角形
③ 斜边都是7厘米的两个等腰直角三角形是全等三角形
④ 各有一个角是30°,且各有一边长为6厘米的两个等腰三角形全等
A、1个 B、2个 C、3个 D、4个
9.在平行四边形ABCD中,BD为对角线,E、F为BD上两点,下列条件中,不能说明
ΔABE≌ΔCDF的是 ( )
A、AE = CF B、AE⊥BD,CF⊥BD C、BF = ED D、AE∥CF
10.下列判断错误的是 ( )
A、底边对应相等的两个等腰三角形全等
B、有一腰和顶角对应相等的两个等腰三角形全等
C、斜边相等的等腰直角三角形全等
D、边长相等的两个等边三角形全等
11.如图,在正方形ABCD中,P是CD上的一点,BE⊥AP于E,DF⊥AP于F,
证明:AE = DF。
12.如图,四边形ABCD中,AB = DC,AD = BC,说明AB∥DC的理由
13.如图,在ΔABC与ΔDEF中,AB = DE,BC = EF,AM、DN分别是BC、EF上的中线,且AM = DN,说明ΔABC≌ΔDEF的理由
14.如图,在ΔAFD和ΔCEB中,点A、E、F、C在同一直线上,有下面四个论断:① AD = CB ② AE = CF ③ ∠B = ∠D ④ AD∥BC,请用其中的3个作为条件,余下的1个作为结论,并说明结论正确的理由.
15.在中,,,直线经过点,且于,于.
(1)当直线绕点旋转到图1的位置时,求证: ①≌;②;
(2)当直线绕点旋转到图2的位置时, 求证:
参考答案:1、∠B = ∠D 2、∠A =∠D或BF = CE 3、3 4、BE 5、20
6、50 7、B 8、A 9、A 10、A
11、证明ΔABE≌ΔDAF(AAS);
12、联结BD,证明ΔABD≌ΔCDB(SSS),得∠A BD=∠CDB;可证;
13、先证明ΔABM≌ΔDEN(SSS);得∠B =∠E,再证明ΔABC≌ΔDEF(SAS);
14、已知条件是①,②,④ .结论是 ③. ΔAFD≌ΔCEB(SAS)
(或:已知条件是①,③,④.结论是②.ΔAFD≌ΔCEB(ASA))
说理过程:略;
15、(1)ΔACD≌ΔCBE(AAS),可得AD=CE,CD=BE,即可
(2)方法同(1)
本节课主要知识点:全等三角形的判定方法,找边角相等的常用方法
【巩固练习】
1.如图,在△ABC和△DEF中,点B、E、C、F在同一直线上,请你从以下4个等式中选出3
个作为已知条件,余下的1个作为结论,并说明结论正确的理由.
F
E
D
C
B
A
① AB = DE; ② AC = DF; ③∠ABC =∠DEF; ④ BE = CF.
解:已知条件是 ① , ② , ④ .
结论是 ③ .
(或:已知条件是 ① , ③ , ④ .结论是 ② .)
说理过程:因为BE = CF(已知),
所以BE + EC = CF + EC(等式的性质).
即BC = EF.
在△ABC和△DEF中,
所以△ABC≌△DEF(S.S.S)。
所以∠ABC =∠DEF(全等三角形的对应角相等)。
2.如图,△ABC中,∠ACB=90°,AC=BC,点P在AB上,AD⊥CP,BE⊥CP,垂足分别为D、E,已知DC=2,求BE的长。
解析:根据同角的余角相等可得∠CAD=∠BCE,△ACD≌△BCE(AAS),CD=BE=2
3.如图,点、、、在一条直线上.如果,,且,那么.为什么?
解:因为(已知),
所以(两直线平行,内错角相等 ).
因为,(平角的意义),
所以(等角的补角相等).
因为(已知),
所以(等式性质),
即
在△和△中,
所以△≌△(),
得(全等三角形的对应角相等),
所以(内错角相等,两直线平行).
【预习思考】
1. 等腰三角形的性质有哪些?
2. 如何判定一个三角形是等腰三角形?