- 163.00 KB
- 2021-10-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2课时 用加减法解较复杂系数的方程组及简单应用
1.掌握用加减法解系数较复杂的二元一次方程组及简单应用;(重点、难点)
2.理解解二元一次方程组的消元思想.
一、情境导入
上节课我们学习了系数较简单的二元一次方程组的解法,方程组中某一未知数的系数相等或互为相反数,或成倍数关系.如果方程组中未知数的系数不成倍数关系,怎样解这样的方程组呢?
二、合作探究
探究点一:用加减法解系数较复杂的方程组
【类型一】 方程组中未知数的系数不成倍数关系[来源:Zxxk.Com]
解方程组:
解析:可把x的系数化为相等,①×2,②×3;也可把y的系数化为相反数,①×3,②×2.
解:①×3,得9x-6y=18③,②×2,得4x+6y=34④.③+④,得13x=52,解得x=4.把x=4代入①,得12-2y=6,解得y=3.所以,方程组的解是
方法总结:解二元一次方程组的关键是消元,即把“二元”化为“一元”.用加减消元法解二元一次方程组时,如果方程组中未知数的系数不成倍数关系,可选定一个未知数,把两个方程分别乘以一个适当的数,使这个未知数的系数化为相同或互为相反数,再用加减法求解.[来源:Z&xx&k.Com][来源:Z。xx。k.Com]
【类型二】 先化简,再解方程组
解方程组:
解析:这个方程组中的方程比较复杂,可通过去分母等步骤把方程化简,然后再用加减法解方程组.
解:原方程组可化为①×5,得70x+15y=120③.②×3,得9x-15y=117④.③+④,得79x=237,解得x=3.把x=3代入②,得9-5y=39,解得y=-6.所以,原方程组的解是
方法总结:解方程组时,如果系数为分数,一般先化为整数系数,并把方程整理化为一般形式,然后根据方程组的特点求解.
探究点二:二元一次方程组的简单应用
【类型一】 利用二元一次方程组的解求字母的值
已知关于x,y的二元一次方程组的解互为相反数,则k的值是________.
解析:因为关于x,y的二元一次方程组的解互为相反数,即x=-y.把x=-y代入原方程组中,得即把①代入②中,得-3(k-3)=2k+1,解得k=.
方法总结:求解二元一次方程(组)中的字母的值,一般有以下方法:①将解代入方程组,得到关于字母的方程组,求解即可;②先消去一个未知数,再求另一个未知数和字母组成的方程组的解.
【类型二】 同解方程组
已知方程组和有相同的解,求a2-2ab+b2的值.
解析:解第一个方程组把求得的解代入第二个方程组求得a、b的值,再代入a2-2ab+b2计算.
解:解方程组得把代入方程组得解此方程组得所以a2-2ab+b2=1.
方法总结:两个方程组同解求字母系数的值,常见的有两种类型:一是字母系数只出现在一个方程组中,这时可解另一个方程组,把求得的解代入含字母系数的方程,再解之即可.二是字母系数包含在两个方程组中,这时可把两个方程组重新组合,把不含字母系数的方程放在一起求解,再把求得的解代入含字母系数的方程组中求解即可.[来源:Zxxk.Com]
三、板书设计
用加减法解较复杂系数的方程组及简单应用
1.用加减法解系数较复杂的方程组
2.二元一次方程组的简单应用
[来源:Zxxk.Com]
本节课的内容难度较大,在教学中,教师应积极启发引导学生,让学生自己探究,总结出解题方法,同时应积极鼓励学生,勇于尝试,不断积累解题经验和方法