- 1.00 MB
- 2021-10-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
教学目标:
1,在现实背景中理解有理数加法的意义.
2,经历探索有理数加法法则的过程,理解有理数的加法法则.
3,会根据有理数的加法法则进行有理数的加法运算。
4,在教学中适当渗透分类讨论思想
教学重点:了解有理数的加法的意义,会根据有理数的加法法则进行有理数的加法运算。
教学难点:有理数加法中的异号两数如何进行加法运算。
教学过程:
一、创设问题情境,引入新课
足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。循环赛中,红队
进 4 个球,失 2 个球;蓝队进 1 个球,失 1 个球;黄队进 2 个球,失 4 个球,在足球循环赛中,如果两个
队的积分相同,净胜球多的队排名在前。如果把进球数记为正数,失球数记负数,净胜球数就是进球数与
失球数的和,于是
红队的净胜数为 4+(-2) ,
蓝队的净胜数为 1+(-1) ,
黄队的净胜数为 2+(-4) ,
这涉及到正数和负数的加法。从这节课开始我们就来学习有理数的运算——加法运算。
下面我们就根据具体情况来探究有理数加法的法则。
二、讲授新课:
(一)探究有理数加法的法则。
活动 1:看下面的问题:
1.一个物体作左右方向的运动,我们规定向左为负,向右为正,向运动 5m 记作 5m,向左运动 5m 记作一
5m。
如果物体先向右运动 5m,再向右运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右运动了 8m,写成算式就是:
5 十 3=8 ①
这个运算也可以用数轴表示,其中假设原点为运动起点(见课本图 1.3-1)
2.如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了 8m,写成算式就是:
(一 5)十(一 3)= 一 8 ②
这个运算也可以用数轴表示,其中假设原点为运动起点(见教科书图 1.3-2)
结合数轴说明两正数的加法。然后对比说明两负数的加法。
活动 2:
1、如果物体先向右运动 5m,再向左运动 3m,那么两次运动后物体从起点向右运动了 2m,写成算式就是:
5 十(一 3)= 2 ③
2、探究:利用数轴,求以下情况时物体运动两次的结果:
(1)先右运动 3m,再向左运动 5m,物体两次运动后总的结果是什么?
(2)先右运动 5m,再向左运动 5m,物体两次运动后总的结果是什么?
(3)先左运动 5m,再向右运动 5m,物体两次运动后总的结果是什么?
启发学生或由教师写出对应的算式:
3 十(一 5)= 一 2 ④
5 十(一 5)= 0 ⑤
(一 5)十 5 = 0 ⑥
所以结果是:(1)向左,2m(2)在原点(3)在原点
3、如果物体第 1 秒向右(或向左)运动 5m,第 2 秒原地不动,两秒后物体从起点向
(或 )运动了 m。
启发学生或由教师写出对应的算式:
5 十 0 = 5 或(一 5)十 0 = 一 5 ⑦
所以结果是:右(或左)运动 5m
活动 3:
你能从算式①~⑦发现有理数的加法运算法则吗?
教师引导学生对上述过程总结。
有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,
互为相反数的两个数相加得 0;
(3)一个数同 0 相加,仍得这个数。
(二)精讲点拨:
例 1.计算:(1)(一 3)十(一 9) (2)(一 4.7)十 3.9.
解:(1)(一 3)十(一 9)=-(3+9)=-12;
(2)(一 4.7)十 3.9=-(4.7-3.9)=-0.8.
例 2. 足球循环赛中,红队胜黄队 4:1,黄队胜蓝队 1:0,蓝队胜红队 1:0. 计算各队的净胜球数。
解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。
三场比赛中,红队共进 4 球,失 2 球,净胜球数为
(+4)+(—2)=+(4—2)=2;
黄队共进 2 球,失 4 球,净胜球数为
(+2)+(—4)= —(4—2)= -2;
蓝队共进 1 球,失 1 球,净胜球数为(+1)+(—1)=0.
(三)跟踪练习:
1.用算式表示下面的结果:
(1)温度由-4℃上升 7℃;(2)收入 7 元,又指出 5 元.
解:(1)(一 4)十 7=十(7 一 4)=3
(2)(十 7)十(一 5)= 十(7 一 5)=2
2 口算:
(1)(-4)十(-6); (2)4 十(一 6);
(3)(一 4)十 6; (4)(-4)十 4;
(5)(一 4)十 14; (6)(一 14)十 4;
(7)6 十(一 6); (8)0+(一 6).
解:(1)(-4)十(-6)=-10; (2)4 十(一 6)=-2;
(3)(一 4)十 6=2; (4)(-4)十 4=0;
(5)(一 4)十 14=10; (6)(一 14)十 4=-10;
(7)6 十(一 6)=0; (8)0+(一 6)=-6.
3.计算:(1)15 十(一 22);(2)(一 13)十(一 8);
(3)(一 0.9)十 1.5; 1 24 2 3
解:(1)15 十(一 22)=一(22 一 15)=一 7
(2)(一 13)十(一 8)= 一(13 十 8)=一 21
(3)(一 0.9)十 1.5=十(1.5 一 0.9)=0.6
1 2 2 1 14 ( )2 3 3 2 6
.
(四)课时小结:
这节课我们主要学习了有理数数加法的运算法则,并熟练用运算法则进行计算。
1.有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,
互为相反数的两个数相加得 0;
(3)一个数同 0 相加,仍得这个数。
2. 在进行有理数数的加法运算时,先确定符号,再算绝对值.
(五)课后作业:
课本 习题 1.3 的第 1、8 题。
相关文档
- 上海教育版数学七上《整式的加减》2021-10-256页
- 2019秋人教版七年级语文上册(江西)课2021-10-2512页
- 北师大版数学七年级上册《从三个方2021-10-254页
- 七年级语文上册第四单元14犟龟习题2021-10-2522页
- (语文版)七年级语文上册第三单元11雪2021-10-2512页
- 2020春(安徽专版)人教部编版七年级语2021-10-2526页
- 七年级数学下册微专题教材P114T3拓2021-10-2511页
- 北师大版七年级下第二章相交线与平2021-10-258页
- 人教版数学七年级下册 第七章《平2021-10-258页
- 最新粤教版初中地理七年级下册《92021-10-2518页