• 175.50 KB
  • 2021-10-26 发布

2020学年七年级数学上册 一次函数与几何综合(一)习题 (新版)鲁教版

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
一次函数与几何综合(一)(习题)‎ 1. 如图,点 B,C 分别在直线 y=2x 和直线 y=kx 上,A,D 是 x 轴上的两点.若四边形 ABCD 是长方形,且 AB:AD=1:2,则 k 的值为 .‎ y y=2x y=kx B C O A D x 2. 如图,一次函数 y=-2x+4 的图象与坐标轴分别交于点 A,B, 把线段 AB 绕着点 A 沿逆时针方向旋转 90°,点 B 落在点 B′ 处,则直线 AB′的表达式为 .‎ y B'‎ A O B x 3. 如图,在平面直角坐标系 xOy 中,四边形 OABC 是正方形, 点 A 的坐标是(4,0),P 为 AB 边上一点,沿 CP 折叠正方形, 折叠后的点 B 落在平面内的点 B′处.已知直线 CB′的解析式 为 y = - 3x + b ,则点 B′的坐标为 ,直线 CP 的表达式为 .‎ B'‎ y C B P O A x 5‎ 1. 如图,点 A 的坐标是(-2,0),点 B 的坐标是(6,0),点 C 在第一象限内,且△OBC 为等边三角形,直线 BC 交 y 轴于点D,过点 A 作直线 AE⊥BD,垂足为点 E,交 OC 于点 F,则点 C 的坐标为 ,直线 AE 的表达式为 .‎ y D C F E A O B x y D A B O x 第 4 题图 第 5 题图 2. 如图,一次函数的图象交 x 轴于点 B(-6,0),交正比例函数的图象于点 A,且点 A 的横坐标为-4,S△AOB = 15 ,S△BOD = 45 ,则一次函数的表达式为 ,正比例函数的表达式为 .‎ 3. 如图,在平面直角坐标系中,已知直线 y = - 3 x + 3 与 x 轴、y ‎4‎ 轴分别交于 A,B 两点,点 C(0,n)是 y 轴上一点,把坐标平面沿直线 AC 折叠,使点 B 刚好落在 x 轴上,则点 C 的坐标是 .‎ y B O A x 5‎ 1. 如图,在平面直角坐标系中,函数 y=-x 的图象 l 是第二、四象限的角平分线.‎ 实验与探究:‎ 由图观察易知 A(0,2)关于直线 l 的对称点 A′的坐标为(-2,0), 请在图中分别标出 B(-5,-3),C(-2,5)关于直线 l 的对称点 B′,C′的位置,并写出它们的坐标:B′ ,C′ .归纳与发现:‎ 结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点 P(m,n)关于第二、四象限的角平分线 l 的对称点 P′的坐标为 .‎ 运用与拓广:‎ 已知两点 D(0,-3),E(1,-4),试在直线 l 上确定一点 Q,使点 Q 到 D,E 两点的距离之和最小,并求出点 Q 的坐标.‎ A'‎ ‎5‎ ‎-4 -‎ ‎3 -‎ ‎2 -‎ ‎1O ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎-2‎ ‎-3‎ B ‎-4‎ ‎-5‎ l C y ‎5‎ ‎4‎ ‎3‎ ‎2‎ ‎1‎ A ‎-‎ ‎-1‎ ‎5 x D E 5‎ 1. 如图,在平面直角坐标系中,直线 y = x - 4 与 x 轴、y 轴分别交于点 A,B,P 为 y 轴上 B 点下方的一点,且 PB=m(m>0), 以点 P 为直角顶点,AP 为腰在第四象限内作等腰 Rt△APM.‎ ‎(1)用含 m 的代数式表示点 M 的坐标;‎ ‎(2)若直线 MB 与 x 轴交于点 Q,求点 Q 的坐标.‎ y A Q O x B P M 5‎ ‎【参考答案】‎ Ø 巩固练习 ‎1. 2‎ ‎5‎ ‎2. y = 1 x + 4‎ ‎2‎ 5‎ ‎3‎ ‎3. (2, 4 - 2‎ ‎), y = - ‎3 x + 4‎ ‎3‎ 5‎ ‎4. (3, 3 3 ), y = ‎3 x + 2 3‎ ‎3 3‎ 5‎ ‎5. y = 5 x +15 , y = - 5 x ‎2 4‎ ‎6. (0, 4 ),(0,-12)‎ ‎3‎ ‎7. 实验与探究:(3,5),(-5,2)归纳与发现:(-n,-m)‎ 运用与拓广:点 Q 的坐标为(2,-2) 8. (1)M(4+m,-8-m)‎ ‎(2)Q(-4,0)‎ 5‎