• 115.00 KB
  • 2021-10-26 发布

2020学年七年级数学上册 一次函数之存在性问题(二)习题 (新版)鲁教版

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
一次函数之存在性问题(二)(习题)‎ 5‎ 1. 如图,直线 y = ‎3 x + 3 与 x 轴、y 轴分别交于点 A,B,第二 ‎3‎ 5‎ y B A O x 象限内是否存在点 P,使△ABP 是等腰直角三角形?若存在, 求出点 P 的坐标;若不存在,请说明理由.‎ y B A O x y B A O x 5‎ y B A O x 1. 如图,直线 y = x + 4 与 x 轴、y 轴分别交于点 A,B,已知 P 是坐标平面内一点,且△ABP 是等腰直角三角形,求点 P 的坐标.‎ y B A O x y B A O x 5‎ 1. 如图,已知直线 l1 的表达式为 y=x,直线 l2 的表达式为 y = - 1 x + 2 ,且平行于 y 轴的动直线 x=t(t<0)分别交直线 ‎2‎ l1,l2 于点 A,B,点 P 是 y 轴上一个动点,且满足△PAB 是等腰直角三角形,则点 P 的坐标为 .‎ y x=t l1‎ B O x l2‎ A 2. 如图,直线 y = 3x + 6 与 x 轴、y 轴分别交于点 A,B,点 P 是第二象限内一动点,若以 P,A,B 为顶点的三角形是含 30°‎ 角的直角三角形,则出点 P 的坐标为 .‎ y B A O x y B A O x 5‎ Ø 思考小结 什么是存在性问题?‎ 通常是在变化的过程中,根据已知条件,探索某种状态或者某种关系是否存在的题目.主要考查运动的结果.‎ 一般情况下我们如何处理存在性问题?‎ ‎(1)研究背景图形 坐标系背景下研究坐标、表达式;几何图形研究边、角、特殊图形;‎ ‎(2)根据不变特征,确定分类标准 研究定点,动点,定线段,确定分类标准不变特征举例:‎ ‎①等腰三角形(两定一动)‎ 以定线段作为底边或者腰确定分类标准,利用两圆一线确定点的位置.‎ ‎②全等三角形 找准目标三角形,根据目标三角形的特征确定分类标准,利用对应关系确定点的位置.‎ ‎③等腰直角三角形(两定一动)‎ 根据直角顶点确定分类标准,然后借助两腰相等或者 45°角确定点的位置.‎ ‎④含特殊角的三角形 根据直角顶点确定分类标准,然后根据特殊角再次分类,从而作图确定点的位置.‎ ‎(3)分析特殊状态的形成因素,画出符合题意的图形并求解 ‎(4)结果验证 估算数值,结合图形进行验证.‎ 5‎ 5‎