- 61.50 KB
- 2022-04-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
实数尊敬的各位老师:大家好!我今天说课的内容是湘教版八年级数学(上册)第三章第三节“实数”第一课时,下面,我将从以下几个方面对这节课的设计进行说明。一、教材分析1、教材的地位和作用本节课是在数的开方的基础上引进无理数的概念,并将数从有理数范围扩充到实数范围。从有理数到实数,这是数的范围的一次重要扩充。对今后学习数学有重要意义。在中学阶段,多数数学问题是在实数范围内研究的。例如,函数的自变量和因变量都在实数范围内讨论,平面几何、立体几何中的几何量(长度、面积、体积等)都用实数表示等。2、教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标)。知识技能:1了解无理数和实数的概念以及实数的分类。2知道实数与数轴上的点具有一一对应关系。数学思考:1经历对实数进行分类的过程,发展学生的分类意识。2经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的。解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数。情感态度:1通过了解数系扩充体会数系扩充对人类发展的作用。2敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。3、教学重点、难点重点:了解无理数和实数的概念;实数的分类。难点:对无理数的认识。二、学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算。课本对学生掌握实数要求不高。只要求学生了解无理数和实数的意义。但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识。本节主要引导学生熟知实数的概念和意义,为后面学习打下基础。三、教法学法分析:3
教法分析:为了更好的把握教学内容的整体性、联续性,我采用问题情境导入法引入新课,用类比归纳法和探究分析法展开数学活动。在教学中注重学生的动手实践能力和自主探究能力的培养,使学生经历:观察、比较、交流、归纳、反思等理性思维的基本过程。学法分析:为了有效地突出重点、突破难点,本节课我采用以学生自主探究、小组合作交流为主的学习方式,启发学生进行观察、类比、分析,让学生多动手动脑,积极参与到概念的建立,问题求解当中来,使学生的主观能动性得到最大程度的发挥。四、教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:课堂小结反思提高当堂检测巩固新知探究交流拓展深化自学指导自主探索创境激趣引入课题一、创设问题情景,引出实数的概念1、什么叫无理数,什么叫有理数,举例说明。2、把下列各数分别填入相应的集合内。,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)教师引导学生得出实数概述并板书:有理数和无理数统称实数(realnumber)。教师点明:实数可分为有理数与无理数。二、议一议1、在实数概念基础上对实数进行不同分类。无理数与有理数一样,也有正负之分,如是正的,是负的。教师提出以下问题,让学生思考:(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正有理数:负有理数:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数、0、负实数。2、了解实数范围内相反数、倒数、绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么。在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。例如,和是互为相反数,和互为倒数。,,,。3
三、想一想让学生思考以下问题1、a是一个实数,它的相反数为,绝对值为;2、如果,那么它的倒数为。四、议一议。探索用数轴上的点来表示无理数ACB11、复习勾股定理。如图在Rt△ABC中AB=a,BC=b,AC=c,其中a、b、c满足什么条件。当a=1,b=1时,c的值是多少?2、出示投影(1)P55页图2—4,让学生探讨以下问题:(A)如图OA=OB,数轴上A点对应的数是多少?(B)如果将所有有理数都标到数轴上,那么数轴上被填满了吗?让学生充分思考交流后,引导学生达成以下共识:(1)A点对应的数等于,它介于1与2之间。(2)如果将所有有理数都标到数轴上,数轴未被填满,在数轴上还可以表示无理数。(3)每一个褛都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。(4)一样地,在数轴上,右边的点比左边的点表示的数大。五、随堂练习1、判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数。2、求下列各数的相反数、倒数和绝对值:(1)3.8(2)(3)3、在数轴上作出对应的点。六、小结1、实数的概念2、实数可以怎样分类3、实数a的相反数为,绝对值,若,它的倒数为。4、数轴上的点和实数一一对应。七、作业板书设计:最后,我说下教学评价分析:本节课的设计,我根据八级学生已有的生活知识经验,通过自主学习得到“实数”概念,在“合作交流”中加深对实数概念的理解。在教学活动中,教师应注重学生的个体差异,适时调整教学过程,激发学生的学习兴趣和求知欲,培养他们科学的探索精神和创新精神。以上是我对本节课的初浅认识,不足之处敬请各位专家批评、指正,谢谢!3
相关文档
- 八年级上数学课件《实数》 (12)_苏2022-04-0123页
- 八年级上数学课件《实数》 (8)_苏2022-04-016页
- 八年级数学上册第二章实数7二次根2022-04-015页
- 八年级上数学《第二章 实数 4. 估 2022-04-0115页
- 2020秋八年级数学上册第二章《实数2022-04-0121页
- 八年级数学上册第二章实数单元综合2022-04-0113页
- 八年级数学上册第二章实数1认识无2022-04-0113页
- 八年级数学上册第3章实数3-3实数第2022-04-0117页
- 2019秋八年级数学上册第3章实数综2022-04-0110页
- 华东师大版八年级上册学案实数2022-03-3111页