• 1.05 MB
  • 2021-10-27 发布

人教版八年级数学上册第十一章三角形直角三角形的性质和判定教学课件

  • 19页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第十一章 三角形 人教版 八年级数学上册 11.2.1 三角形的内角 直角三角形的性质和判定 导入新课 在一个直角三角形里住着三个内角,平时,它们三兄弟 非常团结.可是有一天,老二突然不高兴,发起脾气来,它 指着老大说:“你凭什么度数最大,我也要和你一样 大!”“不行啊!”老大说:“这是不可能的,否则,我们 这个家就再也围不起来了……”“为什么?” 老二很纳闷. 你知道其中的道理吗? 内角三兄弟之争 情境引入 老大的度数为90°,老二若是比老大的度数大,那 么老二的度数要大于90°,而三角形的内角和为 180°,相互矛盾,因而是不可能的. 在这个家里,我 是永远的老大. 问题1:如下图所示是我们常用的三角板,两锐角的度 数之和为多少度? 30°+60°=90° 45°+45°=90° 讲授新课 直角三角形的两个锐角互余一 问题引导 问题2:如图,在Rt△ABC中, ∠C=90°,两锐角 的和等于多少呢? 在Rt△ABC中,因为 ∠C=90°,由三角形内角和定 理,得∠A +∠B+∠C=90°,即 ∠A +∠B=90°. 思考:由此,你可以得到直角三角形有什么性质呢? A B C 直角三角形的两个锐角互余.   u应用格式: 在Rt△ABC 中, ∵ ∠C =90°, ∴ ∠A +∠B =90°.  直角三角形的表示:直角三角形可以用符号“Rt△” 表示,直角三角形ABC 可以写成Rt△ABC . 总结归纳 方法一(利用平行的判定和性质): ∵∠B=∠C=90°, ∴AB∥CD, ∴∠A=∠D. 方法二(利用直角三角形的性质): ∵∠B=∠C=90°, ∴∠A+∠AOB=90°,∠D+∠COD=90°. ∵∠AOB=∠COD, ∴∠A=∠D. 例1(1)如图,∠B=∠C=90°,AD交BC于点O,∠A 与∠D有什么关系? 图 典例精析 解:∠A=∠C.理由如下: ∵∠B=∠D=90°, ∴∠A+∠AOB=90°,∠C+∠COD=90°. ∵∠AOB=∠COD, ∴∠A=∠C. (2)如图,∠B=∠D=90°,AD交BC于点O,∠A与 ∠C有什么关系?请说明理由. 图与图有哪 些共同点与 不同点? 例2 如图, ∠C=∠D=90 °,AD,BC相交于点E. ∠CAE与∠DBE有什么关系?为什么? A B C DE 解:在Rt△ACE中, ∠CAE=90 °- ∠AEC. 在Rt△BDE中, ∠DBE=90 °- ∠BED. ∵ ∠AEC= ∠BED, ∴ ∠CAE= ∠DBE. 解:∵CD⊥AB于点D,BE⊥AC于点E, ∴∠BEA=∠BDF=90°, ∴∠ABE+∠A=90°, ∠ABE+∠DFB=90°. ∴∠A=∠DFB. ∵∠DFB+∠BFC=180°, ∴∠A+∠BFC=180°. 【变式题】如图,△ABC中,CD⊥AB于D,BE⊥AC 于E,CD,BE相交于点F,∠A与∠BFC又有什么关 系?为什么? 思考:通过前面的例题,你能画出这些题型的基本 图形吗? 基本图形 ∠A=∠C∠A=∠D 总结归纳 问题:有两个角互余的三角形是直角三角形吗? 如图,在△ABC中, ∠A +∠B=90° , 那么△ABC 是直角三角形吗? 在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°,所以∠C=90°. 于是 △ABC是直角三角形. 有两个角互余的三角形是直角三角形二 A B C 应用格式: 在△ABC 中, ∵ ∠A +∠B =90°, ∴ △ABC 是直角三角形. 有两个角互余的三角形是直角三角形.   总结归纳 典例精析 例3 如图,∠C=90 °, ∠1= ∠2,△ADE是直角三 角形吗?为什么? A C B D E ( ( 1 2 解:在Rt△ABC中, ∠2+ ∠A=90 °. ∵ ∠1= ∠2, ∴∠1 + ∠A=90 °. 即△ADE是直角三角形. 例4 如图,CE⊥AD,垂足为E,∠A=∠C,△ABD是 直角三角形吗?为什么? 解:△ABD是直角三角形.理由如下: ∵CE⊥AD, ∴∠CED=90°, ∴∠C+∠D=90°, ∵∠A=∠C, ∴∠A+∠D=90°, ∴△ABD是直角三角形. 1.如图,一张长方形纸片,剪去一部分后得到 一个三角形,则图中∠1+∠2的度数是________.90° 2.如图,AB、CD相交于点O,AC⊥CD于点C, 若∠BOD=38°,则∠A=________.52° 第1题图 第2题图 当堂练习 3.在△ABC中,若∠A=43°,∠B=47°,则这个三 角形是____________.直角三角形 4.在一个直角三角形中,有一个锐角等于40°,则另 一个锐角的度数是(  ) A.40° B.50° C.60° D.70° B 5.具备下列条件的△ABC中,不是直角三角形的是 (   ) A.∠A+∠B=∠C B.∠A-∠B=∠C C.∠A:∠B:∠C=1:2:3 D.∠A=∠B=3∠C D 6.如图所示,△ABC为直角三角形,∠ACB=90°, CD⊥AB,与∠1互余的角有(  ) A.∠B B.∠A C.∠BCD和∠A D.∠BCD C 7.如图,在直角三角形ABC中,∠ACB=90°,D是 AB上一点,且∠ACD=∠B.求证:△ACD是直角 三角形. 证明:∵∠ACB=90°, ∴∠A+∠B=90°, ∵∠ACD=∠B, ∴∠A+∠ACD=90°, ∴△ACD是直角三角形.