- 334.00 KB
- 2021-11-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
一元一次不等式与一次函数
课题
一元一次不等式与一次函数(一)
课型
教学目标
教学目标是:
1、理解一次函数图象与一元一次不等式的关系。
2、能够用图像法解一元一次不等式。
3、理解两种方法的关系,会选择适当的方法解一元一次不等式
重点
理解一次函数图象与一元一次不等式的关系。
难点
理解两种方法的关系,会选择适当的方法解一元一次不等式
教学用具
教学环节
本节课设计了五个教学环节:第一环节:情境引入;第二环节:活动探究、合作学习;第三环节:运用巩固、练习提高;第四环节:课堂小结;第五环节:当堂作业。
二次备课
新课导入
上节课我们类比一元一次方程的解法,根据不等式的基本性质,学习了一元一次不等式的解法,本节课我们来学习一元一次不等式其它解法。
课 程 讲
首先,我们来利用一次函数的图象求出相应的一元一次方程的解、一元一次不等式的解集。
1.导探激励
作出函数y=2x-5的图象,观察图象回答下列问题。
(1)x取哪些值时,2x-5=0? (3)x取哪些值时,2x-5>0?
(2)x取哪些值时,2x-5<0? (4)x取哪些值时,2x-5>3?
4
授
(1)当y=0时,2x-5=0。
∴x=, ∴当x=时,2x-5=0。
(2)要找2x-5>0的x的值,也就是函数值y大于0时所对应的x的值,从图象上可知,y>0时,图象在x轴上方,图象上任一点所对应的x值都满足条件,当y=0时,则有2x-5=0,解得x=.当x>时,由y=2x-5可知 y>0。因此当x>时,2x-5>0;
(3)同理可知,当x<时,有2x-5<0;
(4)要使2x-5>3,也就是y=2x-5中的y大于3,那么过纵坐标为3的点作一条直线平行于x轴,这条直线与y=2x-5相交于一点B(4,3),则当x>4时,有2x-5>3。
2.想一想
活动内容:
如果y=-2x-5,那么当x取何值时,y>0?
首先要画出函数y=-2x-5的图象,如图:从图象上可知,图象在x轴上方时,图象上每一点所对应的y的值都大于0,而每一个的值所对应的x的值都在A点的左侧,即为小于-2.5的数,由-2x-5=0,得x=-2.5,所以当x取小于-2.5的值时,y
4
>0。
也可:因为y=-2x-5,y>0也就是-2x-5>0,解不等式即得:x<-2.5
3.达测深化
活动内容:先独立思考5分钟,再小组交流方法2分钟,最后全班展示4分钟。
兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20 m?谁先跑过100 m?
[解]设兄弟俩赛跑的时间为x秒.哥哥跑过的路程为y1,弟弟跑过的路程为y2,根据题意,得
y1=4x y2=3x+9
函数图象如图:
从图象上来看:
(1)9s时哥哥追上弟弟
(2)当0<x<9时,弟弟跑在哥哥前面;
(3)当x>9时,哥哥跑在弟弟前面;
(4)弟弟先跑过20m,哥哥先跑过100m;
4
从图象上直接可以观察出(1)、(2)小题,在回答第(3)题时,过y 轴上20这一点作x轴的平行线,它与y1=4x,y2=3x+9分别有两个交点,每一交点都对应一个x值,哪个x的值小,说明用的时间就短.同理可知谁先跑过100 m.
第三环节:运用巩固、练习提高
1. 已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
解:如图所示:
当x取小于的值时,有y1>y2.
小结
课堂小结
作业布置
板书设计
课后反思
4