- 180.50 KB
- 2021-11-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2课时 坐标系中的点沿x轴、y轴的平移
1.复习并巩固平移的性质及简单的平移作图;
2.能够根据平移的性质解决点的坐标平移变化问题.(重点,难点)
一、情境导入
在如图所示的坐标系中标注出点A0(-2,-3),并按下列要求作图.
(1)将A0向上平移3个单位长度,向右平移6个单位长度得到A1;
(2)将A0向右平移6个单位长度,向上平移3个单位长度得到A2;
(3)将A0向下平移2个单位长度,向左平移4个单位长度得到A3;[来源:学科网ZXXK]
(4)将A0向左平移4个单位长度,向下平移2个单位长度得到A4.[来源:学科网]
观察每一次平移后得到的点的坐标,你能从中发现什么规律?
二、合作探究
探究点一:图形沿x轴或y轴方向的平移与点的坐标变化
【类型一】 沿x轴方向的平移的坐标变化
在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A( )
A.向右平移2个单位
B.向左平移2个单位
C.向右平移4个单位
D.向左平移4个单位
解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,那么向右平移两个横坐标差的绝对值即可.∵点A(-2,3)平移后能与原来的位置关于y轴对称,∴平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.
方法总结:本题考查了平移中点的变化规律及点关于坐标轴对称的知识,用到的知识点为:两点关于y轴对称,纵坐标相同,横坐标互为相反数;点的左右移动只改变点的横坐标.
【类型二】 沿y轴方向的平移的坐标变化
点P(-2,1)向下平移2个单位长度后,在x轴反射下的点P′的坐标为( )
A.(-2,-1) B.(2,-1)
C.(-2,1) D.(2,1)
解析:把点P(-2,1)向下平移2个单位长度后,横坐标不变,纵坐标减去2即可得到平移后点的坐标(-2,-1),在x轴反射下的点P′与P关于x轴对称.点P(-2,1)向下平移2个单位长度后的坐标为(-2,-1),则在x轴反射下的点P′的坐标为(-2,1),故选C.
方法总结:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).[来源:学科网ZXXK]
【类型三】 根据平移判断点所在的位置
将点M(-1,-5)向右平移3个单位长度得到点N,则点N所处的象限是( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
解析:先利用平移中点的变化规律求出点N的坐标,再根据各象限内点的坐标特点即可判断点N所处的象限.点M(-1,-5)向右平移3个单位长度,得到点N的坐标为(2,-5),故点N在第四象限.故选D.
方法总结:本题考查了图形的平移变换及各象限内点的坐标特点.注意平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
探究点二:图形依次沿着x轴方向、y轴方向的平移与坐标变化
【类型一】 根据点的坐标变化判断平移方式
将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC( )
A.向左平移3个单位长度得到的
B.向右平移3个单位长度得到的
C.向上平移3个单位长度得到的
D.向下平移3个单位长度得到的
解析:平移与点的变化规律:横坐标加上3,应向右移动;纵坐标不变.根据点的坐标变化与平移规律可知,当△ABC各顶点的横坐标加上3,纵坐标不变,相当于△ABC向右平移3个单位长度.故选B.
方法总结:本题考查图形的平移变换,关键是要懂得左右平移时点的纵坐标不变,而上下平移时点的横坐标不变.
【类型二】 根据平移判断点所在的位置
在平面直角坐标系上,点(4,6)先向左平移6个单位,再将得到的点的坐标关于x轴对称,得到的点位于( )
A.x轴上 B.y轴上
C.第三象限 D.第四象限
解析:首先根据图形平移点的坐标的变化规律可得点(4,6)先向左平移6个单位后点的坐标,再写出关于x轴对称的点的坐标,然后根据平面直角坐标系中各象限内点的坐标特征即可求解.∵将点(4,6)先向左平移6个单位后点的坐标为(-2,6),∴(-2,6)关于x轴对称的点的坐标(-2,-6),在第三象限.故选C.
方法总结:此题主要考查了坐标与图形变化-平移,关于x轴对称的点的坐标规律,以及平面直角坐标系中各象限内点的坐标特征,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.
【类型三】 平移的综合应用
如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0-2).
(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A′、B′、C′的坐标;
(2)试说明△A′B′C′是如何由△ABC平移得到的;
(3)请直接写出△A′B′C′的面积为________.
解析:(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0-2)可得A、B、C三点的坐标变化规律,进而可得答案;(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.
解:(1)A′为(4,0)、B′为(1,3)、C′为(2,-2);
(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);[来源:Z*xx*k.Com]
(3)△A′B′C′的面积为6.
方法总结:熟练掌握平移的规律是解题的关键,上下平移,横坐标不变,纵坐标上加下减;左右平移,纵坐标不变,横坐标左加右减.[来源:学科网ZXXK]
三、板书设计
1.图形沿x轴的平移的坐标变化
在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.
2.图形沿y轴的平移的坐标变化
在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.
3.图形依次沿着x轴方向、y轴方向的平移与坐标变化
一个图形依次沿着x轴方向、y轴方向的平移后所得到的图形,可以看成是由原来的图形经过一次平移得到的.
本课时的教学主要以学生为主体,鼓励学生主动参与到课堂互动中来,在学生讨论交流的基础上进行归纳总结,使学生对知识的认识从感性上升到理性,体会数形结合思想的应用,增强应用数学的意识,提高数学建模的能力,让学生学会探究,学会学习.