- 447.00 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年湖南省常德市中考数学试卷
一、选择题(本大题8个小题,每小题3分,满分24分)
1.(3.00分)﹣2的相反数是( )
A.2 B.﹣2 C.2﹣1 D.﹣
2.(3.00分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )
A.1 B.2 C.8 D.11
3.(3.00分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是( )
A.a>b B.|a|<|b| C.ab>0 D.﹣a>b
4.(3.00分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则( )
A.k<2 B.k>2 C.k>0 D.k<0
5.(3.00分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( )
A.甲 B.乙 C.丙 D.丁
6.(3.00分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为( )
A.6 B.5 C.4 D.3
7.(3.00分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为( )
A. B. C. D.
8.(3.00分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,Dx=,Dy=.
问题:对于用上面的方法解二元一次方程组时,下面说法错误的是( )
A.D==﹣7 B.Dx=﹣14
C.Dy=27 D.方程组的解为
二、填空题(本大题8个小题,每小题3分,满分24分)
9.(3.00分)﹣8的立方根是 .
10.(3.00分)分式方程﹣=0的解为x= .
11.(3.00分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 千米.
12.(3.00分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是 .
13.(3.00分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是 (只写一个).
14.(3.00分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为 .
视力x
频数
4.0≤x<4.3
20
4.3≤x<4.6
40
4.6≤x<4.9
70
4.9≤x≤5.2
60
5.2≤x<5.5
10
15.(3.00分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= .
16.(3.00分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是 .
三、(本大题2个小题,每小题5分,满分10分)
17.(5.00分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.
18.(5.00分)求不等式组的正整数解.
四、(本大题2个小题,每小题6分,满分12分)
19.(6.00分)先化简,再求值:(+)÷,其中x=.
20.(6.00分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.
(1)求一次函数与反比例函数的解析式;
(2)请根据图象直接写出y1<y2时x的取值范围.
五、(本大题2个小题,每小题7分,满分14分)
21.(7.00分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.
(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?
(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?
22.(7.00分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)
六、(本大题2个小题,每小题8分,满分16分)
23.(8.00分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:
(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);
(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?
(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?
(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
24.(8.00分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.
(1)求证:EA是⊙O的切线;
(2)求证:BD=CF.
七、(本大题2个小题,每小题10分,满分20分)
25.(10.00分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.
(1)求该二次函数的解析式;
(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;
(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.
26.(10.00分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.
(1)如图1,当M在线段BO上时,求证:MO=NO;
(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;
(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.
2018年湖南省常德市中考数学试卷
参考答案与试题解析
一、选择题(本大题8个小题,每小题3分,满分24分)
1.(3.00分)﹣2的相反数是( )
A.2 B.﹣2 C.2﹣1 D.﹣
【分析】直接利用相反数的定义分析得出答案.
【解答】解:﹣2的相反数是:2.
故选:A.
2.(3.00分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )
A.1 B.2 C.8 D.11
【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.
【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,
4<x<10,
故选:C.
3.(3.00分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是( )
A.a>b B.|a|<|b| C.ab>0 D.﹣a>b
【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.
【解答】解:由数轴可得,
﹣2<a<﹣1<0<b<1,
∴a<b,故选项A错误,
|a|>|b|,故选项B错误,
ab<0,故选项C错误,
﹣a>b,故选项D正确,
故选:D.
4.(3.00分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则( )
A.k<2 B.k>2 C.k>0 D.k<0
【分析】根据一次函数的性质,可得答案.
【解答】解:由题意,得
k﹣2>0,
解得k>2,
故选:B.
5.(3.00分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( )
A.甲 B.乙 C.丙 D.丁
【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
【解答】解:∵1.5<2.6<3.5<3.68,
∴甲的成绩最稳定,
∴派甲去参赛更好,
故选:A.
6.(3.00分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为( )
A.6 B.5 C.4 D.3
【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.
【解答】解:∵ED是BC的垂直平分线,
∴DB=DC,
∴∠C=∠DBC,
∵BD是△ABC的角平分线,
∴∠ABD=∠DBC,
∴∠C=∠DBC=∠ABD=30°,
∴BD=2AD=6,
∴CE=CD×cos∠C=3,
故选:D.
7.(3.00分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为( )
A. B. C. D.
【分析】根据从正面看得到的图形是主视图,可得答案.
【解答】解:从正面看是一个等腰三角形,高线是虚线,
故选:D.
8.(3.00分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,Dx=,Dy=.
问题:对于用上面的方法解二元一次方程组时,下面说法错误的是( )
A.D==﹣7 B.Dx=﹣14
C.Dy=27 D.方程组的解为
【分析】分别根据行列式的定义计算可得结论.
【解答】解:A、D==﹣7,正确;
B、Dx==﹣2﹣1×12=﹣14,正确;
C、Dy==2×12﹣1×3=21,不正确;
D、方程组的解:x===2,y===﹣3,正确;
故选:C.
二、填空题(本大题8个小题,每小题3分,满分24分)
9.(3.00分)﹣8的立方根是 ﹣2 .
【分析】利用立方根的定义即可求解.
【解答】解:∵(﹣2)3=﹣8,
∴﹣8的立方根是﹣2.
故答案为:﹣2.
10.(3.00分)分式方程﹣=0的解为x= ﹣1 .
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:去分母得:x﹣2﹣3x=0,
解得:x=﹣1,
经检验x=1是分式方程的解.
故答案为:﹣1
11.(3.00分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108 千米.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:1 5000 0000=1.5×108,
故答案为:1.5×108.
12.(3.00分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是 1 .
【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.
【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,
所以这组数据的中位数为1,
故答案为:1.
13.(3.00分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是 6 (只写一个).
【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.
【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,
∴△=b2﹣4×2×3>0,
解得:b<﹣2或b>2.
故答案可以为:6.
14.(3.00分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为 0.35 .
视力x
频数
4.0≤x<4.3
20
4.3≤x<4.6
40
4.6≤x<4.9
70
4.9≤x≤5.2
60
5.2≤x<5.5
10
【分析】直接利用频数÷总数=频率进而得出答案.
【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,
则视力在4.9≤x<5.5这个范围的频率为:=0.35.
故答案为:0.35.
15.(3.00分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= 75° .
【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.
【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,
∴∠EBG=∠EGB.
∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.
又∵AD∥BC,
∴∠AGB=∠GBC.
∴∠AGB=∠BGH.
∵∠DGH=30°,
∴∠AGH=150°,
∴∠AGB=∠AGH=75°,
故答案为:75°.
16.(3.00分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是 9 .
【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.
【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,
所以有x﹣12+x=2×3,
解得x=9.
故答案为9.
三、(本大题2个小题,每小题5分,满分10分)
17.(5.00分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.
【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【解答】解:原式=1﹣(2﹣1)+2﹣4,
=1﹣2+1+2﹣4,
=﹣2.
18.(5.00分)求不等式组的正整数解.
【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.
【解答】解:,
解不等式①,得x>﹣2,
解不等式②,得x≤,
不等式组的解集是﹣2<x≤,
不等式组的正整数解是1,2,3,4.
四、(本大题2个小题,每小题6分,满分12分)
19.(6.00分)先化简,再求值:(+)÷,其中x=.
【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.
【解答】解:原式=[+]×(x﹣3)2
=×(x﹣3)2
=x﹣3,
把x=代入得:原式=﹣3=﹣.
20.(6.00分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.
(1)求一次函数与反比例函数的解析式;
(2)请根据图象直接写出y1<y2时x的取值范围.
【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;
(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.
【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),
∴k2=4×1=4,
∴反比例函数的解析式为y2=.
∵点B(n,﹣2)在反比例函数y2=的图象上,
∴n=4÷(﹣2)=﹣2,
∴点B的坐标为(﹣2,﹣2).
将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,
,解得:,
∴一次函数的解析式为y=x﹣1.
(2)观察函数图象,可知:当x<﹣2和0<x<
4时,一次函数图象在反比例函数图象下方,
∴y1<y2时x的取值范围为x<﹣2或0<x<4.
五、(本大题2个小题,每小题7分,满分14分)
21.(7.00分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.
(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?
(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?
【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.
【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,
根据题意得:,
解得:.
答:该店5月份购进甲种水果190千克,购进乙种水果10千克.
(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,
根据题意得:w=10a+20(120﹣a)=﹣10a+2400.
∵甲种水果不超过乙种水果的3倍,
∴a≤3(120﹣a),
解得:a≤90.
∵k=﹣10<0,
∴w随a值的增大而减小,
∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.
∴月份该店需要支付这两种水果的货款最少应是1500元.
22.(7.00分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)
【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.
【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.
∵AB=CD,AB+CD=AD=2,
∴AB=CD=1.
在Rt△ABE中,AB=1,∠A=37°,
∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.
在Rt△CDF中,CD=1,∠D=45°,
∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.
∵BE⊥AD,CF⊥AD,
∴BE∥CM,
又∵BE=CM,
∴四边形BEMC为平行四边形,
∴BC=EM,CM=BE.
在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,
∴EM=≈1.4,
∴B与C之间的距离约为1.4米.
六、(本大题2个小题,每小题8分,满分16分)
23.(8.00分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:
(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);
(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?
(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?
(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;
(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;
(3)用360°乘以喜欢篮球人数所占的百分比即可;
(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.
【解答】解:(1)调查的总人数为8÷16%=50(人),
喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),
所以喜欢乒乓球的学生所占的百分比=×100%=28%,
补全条形统计图如下:
(2)500×12%=60,
所以估计全校500名学生中最喜欢“排球”项目的有60名;
(3),篮球”部分所对应的圆心角=360×40%=144°;
(4)画树状图为:
共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,
所以抽取的两人恰好是甲和乙的概率==.
24.(8.00分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.
(1)求证:EA是⊙O的切线;
(2)求证:BD=CF.
【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;
(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,
得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.
【解答】证明:(1)连接OD,
∵⊙O是等边三角形ABC的外接圆,
∴∠OAC=30°,∠BCA=60°,
∵AE∥BC,
∴∠EAC=∠BCA=60°,
∴∠OAE=∠OAC+∠EAC=30°+60°=90°,
∴AE是⊙O的切线;
(2)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
∵A、B、C、D四点共圆,
∴∠ADF=∠ABC=60°,
∵AD=DF,
∴△ADF是等边三角形,
∴AD=AF,∠DAF=60°,
∴∠BAC+∠CAD=∠DAF+∠CAD,
即∠BAF=∠CAF,
在△BAD和△CAF中,
∵,
∴△BAD≌△CAF,
∴BD=CF.
七、(本大题2个小题,每小题10分,满分20分)
25.(10.00分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.
(1)求该二次函数的解析式;
(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;
(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.
【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;
(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=•4•t﹣•t•t,然后根据二次函数的性质解决问题;
(3)设Q(m,m2﹣m),根据相似三角形的判定方法,当=时,△PQO
∽△COA,则|m2﹣m|=2|m|;当=时,△PQO∽△CAO,则|m2﹣m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标.
【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,
∴B点坐标为(6,0),
设抛物线解析式为y=ax(x﹣6),
把A(8,4)代入得a•8•2=4,解得a=,
∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;
(2)设M(t,0),
易得直线OA的解析式为y=x,
设直线AB的解析式为y=kx+b,
把B(6,0),A(8,4)代入得,解得,
∴直线AB的解析式为y=2x﹣12,
∵MN∥AB,
∴设直线MN的解析式为y=2x+n,
把M(t,0)代入得2t+n=0,解得n=﹣2t,
∴直线MN的解析式为y=2x﹣2t,
解方程组得,则N(t,t),
∴S△AMN=S△AOM﹣S△NOM
=•4•t﹣•t•t
=﹣t2+2t
=﹣(t﹣3)2+3,
当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);
(3)设Q(m,m2﹣m),
∵∠OPQ=∠ACO,
∴当=时,△PQO∽△COA,即=,
∴PQ=2PO,即|m2﹣m|=2|m|,
解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);
解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);
∴当=时,△PQO∽△CAO,即=,
∴PQ=PO,即|m2﹣m|=|m|,
解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),
解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);
综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).
26.(10.00分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.
(1)如图1,当M在线段BO上时,求证:MO=NO;
(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;
(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.
【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;
(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;
(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+
b,根据勾股定理得,AC=(a+b),
同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.
【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,
∴OD=OA,∠AOM=∠DON=90°,
∴∠OND+∠ODN=90°,
∵∠ANH=∠OND,
∴∠ANH+∠ODN=90°,
∵DH⊥AE,
∴∠DHM=90°,
∴∠ANH+∠OAM=90°,
∴∠ODN=∠OAM,
∴△DON≌△AOM,
∴OM=ON;
(2)连接MN,
∵EN∥BD,
∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,
∴EN=CN,同(1)的方法得,OM=ON,
∵OD=OD,
∴DM=CN=EN,
∵EN∥DM,
∴四边形DENM是平行四边形,
∵DN⊥AE,
∴▱DENM是菱形,
∴DE=EN,
∴∠EDN=∠END,
∵EN∥BD,
∴∠END=∠BDN,
∴∠EDN=∠BDN,
∵∠BDC=45°,
∴∠BDN=22.5°,
∵∠AHD=90°,
∴∠AMB=∠DME=90°﹣∠BDN=67.5°,
∵∠ABM=45°,
∴∠BAM=67.5°=∠AMB,
∴BM=AB;
(3)设CE=a(a>0)
∵EN⊥CD,
∴∠CEN=90°,
∵∠ACD=45°,
∴∠CNE=45°=∠ACD,
∴EN=CE=a,
∴CN=a,
设DE=b(b>0),
∴AD=CD=DE+CE=a+b,
根据勾股定理得,AC=AD=(a+b),
同(1)的方法得,∠OAM=∠ODN,
∵∠OAD=∠ODC=45°,
∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,
∴△DEN∽△ADE,
∴,
∴,
∴a=b(已舍去不符合题意的)
∴CN=a=b,AC=(a+b)=b,
∴AN=AC﹣CN=b,
∴AN2=2b2,AC•CN=b•b=2b2
∴AN2=AC•CN.
相关文档
- 2020全国中考数学试卷分类汇编(2)2021-11-0611页
- 2020年四川省自贡市中考数学试卷【2021-11-0610页
- 2019年辽宁省本溪市中考数学试卷2021-11-0633页
- 2018年江苏省连云港市中考数学试卷2021-11-069页
- 2019年贵州省铜仁市中考数学试卷2021-11-0627页
- 2019浙江省宁波市2019年中考数学试2021-11-0620页
- 2019年四川省广安市中考数学试卷2021-11-0624页
- 2019江苏省盐城市中考数学试卷2021-11-0628页
- 2009年四川省南充市中考数学试卷(含2021-11-0610页
- 2019江西省中考数学试卷2021-11-0631页