- 408.50 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年四川省乐山市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求
1.(3分)﹣2的相反数是( )
A.﹣2 B.2 C. D.﹣
2.(3分)如图是由长方体和圆柱组成的几何体,它的俯视图是( )
A. B. C. D.
3.(3分)方程组==x+y﹣4的解是( )
A. B. C. D.
4.(3分)如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是( )
A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC
5.(3分)下列调查中,适宜采用普查方式的是( )
A.调查全国中学生心理健康现状
B.调查一片试验田里某种大麦的穗长情况
C.要查冷饮市场上冰淇淋的质量情况
D.调查你所在班级的每一个同学所穿鞋子的尺码情况
6.(3分)估计+1的值,应在( )
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
7.(3分)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
如图所示,请根据所学知识计算:圆形木材的直径AC是( )
A.13寸 B.20寸 C.26寸 D.28寸
8.(3分)已知实数a、b满足a+b=2,ab=,则a﹣b=( )
A.1 B.﹣ C.±1 D.±
9.(3分)如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于( )
A. B.6 C.3 D.12
10.(3分)二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是( )
A.a=3±2 B.﹣1≤a<2
C.a=3或﹣≤a<2 D.a=3﹣2或﹣1≤a<﹣
二、填空题:本大题共6小题,每小题3分,共18分
11.(3分)计算:|﹣3|= .
12.(3分)化简+的结果是
13.(3分)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为 .
14.(3分)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是 度.
15.(3分)如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为 .
16.(3分)已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.
(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2= ;
(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018= .
三、简答题:本大题共3小题,每小题9分,共27分
17.(9分)计算:4cos45°+(π﹣2018)0﹣
18.(9分)解不等式组:
19.(9分)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.
四、本大题共3小题,每小题10分,共30分
20.(10分)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根
21.(10分)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.
(1)收集数据
从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述数据
按如下分数段整理、描述这两组样本数据:
成绩x
人数
班级
50≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
甲班
1
3
3
2
1
乙班
2
1
m
2
n
在表中:m= ,n= .
(3)分析数据
①两组样本数据的平均数、中位数、众数如表所示:
班级
平均数
中位数
众数
甲班
72
x
75
乙班
72
70
y
在表中:x= ,y= .
②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有 人.
③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.
22.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
五、本大题共2小题,每小题10分,共20分
23.(10分)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
24.(10分)如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.
(1)求证:AC∥PO;
(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.
六、本大题共2小题,第25题12分,第26题13分,共25分
25.(12分)已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为 ;
(2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若k=,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.
26.(13分)如图,在平面直角坐标系中,抛物线y=ax2+bx+
c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.
(1)求抛物线的解析式;
(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.
①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.
②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.
2018年四川省乐山市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求
1.(3分)﹣2的相反数是( )
A.﹣2 B.2 C. D.﹣
【分析】根据只有符号不同的两个数叫做互为相反数解答.
【解答】解:﹣2的相反数是2.
故选:B.
2.(3分)如图是由长方体和圆柱组成的几何体,它的俯视图是( )
A. B. C. D.
【分析】根据从上边看得到的图形是俯视图,可得答案.
【解答】解:从上边看外面是正方形,里面是没有圆心的圆,
故选:A.
3.(3分)方程组==x+y﹣4的解是( )
A. B. C. D.
【分析】先把原方程组化为,进而利用代入消元法得到方程组的解为
.
【解答】解:由题可得,,
消去x,可得
2(4﹣y)=3y,
解得y=2,
把y=2代入2x=3y,可得
x=3,
∴方程组的解为.
故选:D.
4.(3分)如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是( )
A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC
【分析】根据平行线分线段成比例定理即可得到答案.
【解答】解:∵DE∥FG∥BC,DB=4FB,
∴.
故选:B.
5.(3分)下列调查中,适宜采用普查方式的是( )
A.调查全国中学生心理健康现状
B.调查一片试验田里某种大麦的穗长情况
C.要查冷饮市场上冰淇淋的质量情况
D.调查你所在班级的每一个同学所穿鞋子的尺码情况
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【解答】解:A、了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;
B、了解一片试验田里某种大麦的穗长情况调查范围广,适合抽样调查,故B错误;
C、了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;
D、调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;
故选:D.
6.(3分)估计+1的值,应在( )
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
【分析】根据≈2.236,可得答案.
【解答】解:∵≈2.236,
∴+1≈3.236,
故选:C.
7.(3分)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
如图所示,请根据所学知识计算:圆形木材的直径AC是( )
A.13寸 B.20寸 C.26寸 D.28寸
【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可;
【解答】解:设⊙O的半径为r.
在Rt△ADO中,AD=5,OD=r﹣1,OA=r,
则有r2=52+(r﹣1)2,
解得r=13,
∴⊙O的直径为26寸,
故选:C.
8.(3分)已知实数a、b满足a+b=2,ab=,则a﹣b=( )
A.1 B.﹣ C.±1 D.±
【分析】利用完全平方公式解答即可.
【解答】解:∵a+b=2,ab=,
∴(a+b)2=4=a2+2ab+b2,
∴a2+b2=,
∴(a﹣b)2=a2﹣2ab+b2=1,
∴a﹣b=±1,
故选:C.
9.(3分)如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于( )
A. B.6 C.3 D.12
【分析】将双曲线逆时针旋转使得l与y轴重合,等腰三角形△PAO的底边在y轴上,应用反比例函数比例系数k的性质解答问题.
【解答】解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.
双曲线C3,的解析式为y=﹣
过点P作PB⊥y轴于点B
∵PA=PB
∴B为OA中点.
∴S△PAB=S△POB
由反比例函数比例系数k的性质,S△POB=3
∴△POA的面积是6
故选:B.
10.(3分)二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是( )
A.a=3±2 B.﹣1≤a<2
C.a=3或﹣≤a<2 D.a=3﹣2或﹣1≤a<﹣
【分析】根据二次函数的图象性质即可求出答案.
【解答】解:由题意可知:方程x2+(a﹣2)x+3=x在1≤x≤2上只有一个解,
即x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,
当△=0时,
即(a﹣3)2﹣12=0
a=3±2
当a=3+2时,
此时x=﹣,不满足题意,
当a=3﹣2时,
此时x=,满足题意,
当△>0时,
令y=x2+(a﹣3)x+3,
令x=1,y=a+1,
令x=2,y=2a+1
(a+1)(2a+1)≤0
解得:﹣1≤a≤,
当a=﹣1时,此时x=1或3,满足题意;
当a=﹣时,此时x=2或x=,不满足题意,
综上所述,a=3﹣2或﹣1≤a<,
故选:D.
二、填空题:本大题共6小题,每小题3分,共18分
11.(3分)计算:|﹣3|= 3 .
【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.
【解答】解:|﹣3|=3.
故答案为:3.
12.(3分)化简+的结果是 ﹣1
【分析】直接利用分式加减运算法则计算得出答案.
【解答】解:+
=﹣
=
=﹣1.
故答案为:﹣1.
13.(3分)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为 ﹣6 .
【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.
【解答】解:设点C所表示的数为x,
∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,
∴AB=4﹣(﹣1),AC=﹣1﹣x,
根据题意AB=AC,
∴4﹣(﹣1)=﹣1﹣x,
解得x=﹣6.
故答案为:﹣6.
14.(3分)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是 22.5 度.
【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.
【解答】解:∵四边形ABCD是正方形,
∴∠CAB=∠BCA=45°;
△ACE中,AC=AE,则:
∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;
∴∠BCE=∠ACE﹣∠ACB=22.5°.
故答案为22.5.
15.(3分)如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为 .
【分析】过O′作O′M⊥OA于M,解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′,分别求出即可.
【解答】解:过O′作O′M⊥OA于M,则∠O′MA=90°,
∵点O′的坐标是(1,),
∴O′M=,OM=1,
∵AO=2,
∴AM=2﹣1=1,
∴tan∠O′AM==,
∴∠O′AM=60°,
即旋转角为60°,
∴∠CAC′=∠OAO′=60°,
∵把△OAC绕点A按顺时针方向旋转到△O′AC′,
∴S△OAC=S△O′AC′,
∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=﹣=,
故答案为:.
16.(3分)已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.
(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2= 1 ;
(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018= .
【分析】利用一次函数图象上点的坐标特征可求出两直线与x轴的交点坐标,进而可得出两点间的距离,联立两直线解析式成方程组,通过解方程组可求出两直线的交点坐标.
(1)代入k=2,可得出d的值,利用三角形的面积公式可求出S2的值;
(2)分别代入k=2、3、4、…、2018求出S2、S3、S4、…、S2018值,将其相加即可得出结论.
【解答】解:当y=0时,有(k﹣1)x+k+1=0,
解得:x=﹣1﹣,
∴直线l1与x轴的交点坐标为(﹣1﹣,0),
同理,可得出:直线l2与x轴的交点坐标为(﹣1﹣,0),
∴两直线与x轴交点间的距离d=﹣1﹣﹣(﹣1﹣)=﹣.
联立直线l1、l2成方程组,得:
,解得:,
∴直线l1、l2的交点坐标为(﹣1,﹣2).
(1)当k=2时,d=﹣=1,
∴S2=×|﹣2|d=1.
故答案为:1.
(2)当k=3时,S3=﹣;当k=4时,S4=﹣;…;S2018=﹣,
∴S2+S3+S4+……+S2018=﹣+﹣+﹣+…+﹣,
=﹣,
=2﹣,
=.
故答案为:.
三、简答题:本大题共3小题,每小题9分,共27分
17.(9分)计算:4cos45°+(π﹣2018)0﹣
【分析】
原式利用特殊角的三角函数值,零指数幂法则,以及算术平方根定义计算即可求出值.
【解答】解:原式=4×+1﹣2=1.
18.(9分)解不等式组:
【分析】先求出每个不等式的解集,再求出不等式组的解集即可.
【解答】解:,
∵解不等式①得:x>0,
解不等式②得:x<6,
∴不等式组的解集为0<x<6.
19.(9分)如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.
【分析】由∠3=∠4可以得出∠ABD=∠ABC,再利用ASA就可以得出△ADB≌△ACB,就可以得出结论.
【解答】证明:∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,
∴∠ABD=∠ABC
在△ADB和△ACB中,
,
∴△ADB≌△ACB(ASA),
∴BD=BC.
四、本大题共3小题,每小题10分,共30分
20.(10分)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷
(﹣8m),其中m是方程x2+x﹣2=0的根
【分析】先利用平方差公式和完全平方公式及单项式的除法化简原式,再由方程的解的定义得出m2+m=2,代入计算可得.
【解答】解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)
=4m2﹣1﹣m2+2m﹣1﹣m2
=2m2+2m﹣2
=2(m2+m﹣1),
∵m是方程x2+x﹣2=0的根,
∴m2+m﹣2=0,即m2+m=2,
则原式=2×(2﹣1)=2.
21.(10分)某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.
(1)收集数据
从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述数据
按如下分数段整理、描述这两组样本数据:
成绩x
人数
班级
50≤x<60
60≤x<70
70≤x<80
80≤x<90
90≤x≤100
甲班
1
3
3
2
1
乙班
2
1
m
2
n
在表中:m= 3 ,n= 2 .
(3)分析数据
①两组样本数据的平均数、中位数、众数如表所示:
班级
平均数
中位数
众数
甲班
72
x
75
乙班
72
70
y
在表中:x= 75 ,y= 70 .
②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有 20 人.
③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.
【分析】(2)由收集的数据即可得;
(3)①根据众数和中位数的定义求解可得;
②用总人数乘以乙班样本中优秀人数所占比例可得;
③列表得出所有等可能结果,利用概率公式求解可得.
【解答】解:(2)由收集的数据得知m=3、n=2,
故答案为:3、2;
(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,
∴甲班成绩的中位数x==75,
乙班成绩70分出现次数最多,所以的众数y=70,
故答案为:75、70;
②估计乙班50名学生中身体素质为优秀的学生有50×=20人;
③列表如下:
男
女
男
男、男
女、男
男
男、男
女、男
女
男、女
女、女
由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,
所以抽到的2名同学是1男1女的概率为=.
22.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:
(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;
(2)求恒温系统设定的恒定温度;
(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
【分析】(1)应用待定系数法分段求函数解析式;
(2)观察图象可得;
(3)代入临界值y=10即可.
【解答】解:(1)设线段AB解析式为y=k1x+b(k≠0)
∵线段AB过点(0,10),(2,14)
代入得
解得
∴AB解析式为:y=2x+10(0≤x<5)
∵B在线段AB上当x=5时,y=20
∴B坐标为(5,20)
∴线段BC的解析式为:y=20(5≤x<10)
设双曲线CD解析式为:y=(k2≠0)
∵C(10,20)
∴k2=200
∴双曲线CD解析式为:y=(10≤x≤24)
∴y关于x的函数解析式为:
y=
(2)由(1)恒温系统设定恒温为20°C
(3)把y=10代入y=中,解得,x=20
∴20﹣10=10
答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
五、本大题共2小题,每小题10分,共20分
23.(10分)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
【分析】(1)直接利用△=b2﹣4ac,进而利用偶次方的性质得出答案;
(2)首先解方程,进而由|x1﹣x2|=6,求出答案;
(3)利用(2)中所求得出m的值,进而利用二次函数对称轴得出答案.
【解答】(1)证明:由题意可得:
△=(1﹣5m)2﹣4m×(﹣5)
=1+25m2﹣10m+20m
=25m2+10m+1
=(5m+1)2≥0,
故无论m为任何非零实数,此方程总有两个实数根;
(2)解:mx2+(1﹣5m)x﹣5=0,
解得:x1=﹣,x2=5,
由|x1﹣x2|=6,
得|﹣﹣5|=6,
解得:m=1或m=﹣;
(3)解:由(2)得,当m>0时,m=1,
此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,
由题已知,P,Q关于x=2对称,
∴=2,即2a=4﹣n,
∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.
24.(10分)如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.
(1)求证:AC∥PO;
(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.
【分析】(1)根据切线长定理得出PA=PB,且PO平分∠BPA,利用等腰三角形三线合一的性质得出PO⊥AB.根据圆周角定理得出AC⊥AB,进而得到AC∥PO;
(2)连结OA、DF.先用勾股定理计算出AQ=4,再计算出PA=PB=6,利用切线长定理可得到F点为AB的中点,易得DF为△BAP的中位线,则DF=PA=3,DF∥PA,利用DF∥AQ得到△DFE∽△QEA,所以==,设AE=4t,FE=3t,则AF=AE+FE=7t,于是BE=BF+FE=AF+FE=7t+3t=10t,最后计算.
【解答】(1)证明:∵PA、PB是⊙O的两条切线,A、B是切点,
∴PA=PB,且PO平分∠BPA,
∴PO⊥AB.
∵BC是直径,
∴∠CAB=90°,
∴AC⊥AB,
∴AC∥PO;
(2)解:连结OA、DF,如图,
∵PA、PB是⊙O的两条切线,A、B是切点,
∴∠OAQ=∠PBQ=90°.
在Rt△OAQ中,OA=OC=3,∴OQ=5.
由QA2+OA2=OQ2,得QA=4.
在Rt△PBQ中,PA=PB,QB=OQ+OB=8,
由QB2+PB2=PQ2,得82+PB2=(PB+4)2,
解得PB=6,
∴PA=PB=6,
∵OP⊥AB,
∴BF=AF=AB.
又∵D为PB的中点,
∴DF∥AP,DF=PA=3,
∴△DFE∽△QEA,
∴==,
设AE=4t,FE=3t,则AF=AE+FE=7t,
∴BE=BF+FE=AF+FE=7t+3t=10t,
∴==.
六、本大题共2小题,第25题12分,第26题13分,共25分
25.(12分)已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为 45° ;
(2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若k=,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.
【分析】(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;
(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;
(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;
【解答】解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,
∴∠FBE=∠APE,∠FAC=∠C=90°,
四边形ADBF是平行四边形,
∴BD=AF,BF=AD,
∵AC=BD,CD=AE,
∴AF=AC,
∵∠FAC=∠C=90°,
∴△FAE≌△ACD,
∴EF=AD=BF,∠FEA=∠ADC,
∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EHD,
∵AD∥BF,
∴∠EFB=90°,
∵EF=BF,
∴∠FBE=45°,
∴∠APE=45°,
故答案为:45°.
(2)(1)中结论不成立,理由如下:
如图2,
过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,
∴∠FBE=∠APE,∠FAC=∠C=90°,
四边形ADBF是平行四边形,
∴BD=AF,BF=AD,
∵AC=BD,CD=AE,
∴,
∵BD=AF,
∴,
∵∠FAC=∠C=90°,
∴△FAE∽△ACD,
∴=,∠FEA=∠ADC,
∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EMD,∵AD∥BF,
∴∠EFB=90°,
在Rt△EFB中,tan∠FBE=,
∴∠FBE=30°,
∴∠APE=30°,
(3)(2)中结论成立,如图3,作EH∥CD,DH∥BE,EH,DH相交于H,连接AH,
∴∠APE=∠ADH,∠HEC=∠C=90°,四边形EBDH是平行四边形,
∴BE=DH,EH=BD,
∵AC=BD,CD=AE,
∴,
∵∠HEA=∠C=90°,
∴△ACD∽△HEA,
∴,∠ADC=∠HAE,
∵∠CAD+∠ADC=90°,
∴∠HAE+∠CAD=90°,
∴∠HAD=90°,
在Rt△DAH中,tan∠ADH==,
∴∠ADH=30°,
∴∠APE=30°.
26.(13分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.
(1)求抛物线的解析式;
(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.
①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.
②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.
【分析】(1)应用待定系数法求解析式
(2)①分别用t表示△ADC、△PQA各边,应用分类讨论相似三角形比例式,求t值;
②分别用t表示△APQ与△CAQ的面积之和,讨论最大值.
【解答】解:(1)∵OA=1,OB=4
∴A(1,0),B(﹣4,0)
设抛物线的解析式为y=a(x+4)(x﹣1)
∵点C(0,﹣)在抛物线上
∴﹣
解得a=
∴抛物线的解析式为y=
(2)存在t,使得△ADC与△PQA相似.
理由:①在Rt△AOC中,OA=1,OC=
则tan∠ACO=
∵tan∠OAD=
∴∠OAD=∠ACO
∵直线l的解析式为y=
∴D(0,﹣)
∵点C(0,﹣)
∴CD=
由AC2=OC2+OA2,得AC=
在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t
由∠PAQ=∠ACD,要使△ADC与△PQA相似
只需或
则有或
解得t1=,t2=
∵t1<2.5,t2<2.5
∴存在t=或t=,使得△ADC与△PQA相似
②存在t,使得△APQ与△CAQ的面积之和最大
理由:作PF⊥AQ于点F,CN⊥AQ于N
在△APF中,PF=AP•sin∠PAF=
在△AOD中,由AD2=OD2+OA2,得AD=
在△ADC中,由S△ADC=
∴CN=
∴S△AQP+S△AQC=
=﹣
∴当t=时,△APQ与△CAQ的面积之和最大
相关文档
- 2019年广西贺州市中考数学试卷2021-11-0622页
- 2020年广西玉林市中考数学试卷【含2021-11-069页
- 2019山东省枣庄市中考数学试卷 解2021-11-0628页
- 2013年浙江省衢州市中考数学试卷及2021-11-0611页
- 2018年湖南省邵阳市中考数学试卷2021-11-0626页
- 2010年广东省汕头市中考数学试卷2021-11-0617页
- 2018年广东省深圳市中考数学试卷2021-11-0625页
- 2018年山东省淄博市中考数学试卷含2021-11-0619页
- 2017年黑龙江省绥化市中考数学试卷2021-11-0630页
- 中考卷-2020中考数学试卷(解析版) (12021-11-0628页