- 238.52 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课 题: 11.1随机事件的概率
教学目的:
1了解基本事件、等可能性事件的概念
2.理解等可能性事件的概率的定义,并能求简单的等可能性事件的概率,初步掌握等可能性事件的概率计算公式
教学重点:等可能性事件的概率计算公式
教学难点:等可能性事件的概率计算公式
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
教学过程
一、复习引入:
1 事件的定义:
随机事件:在一定条件下可能发生也可能不发生的事件;
必然事件:在一定条件下必然发生的事件;
不可能事件:在一定条件下不可能发生的事件
说明:三种事件都是在“一定条件下”发生的,当条件改变时,事件的性质也可以发生变化
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作
3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;
4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的两个极端情形
二、讲解新课:
1基本事件:
一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件
例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件由几个基本
事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成).
2.等可能性事件:
如果一次试验中可能出现的结果有个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是,这种事件叫等可能性事件
3.等可能性事件的概率:
如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率.
例如:掷一枚骰子,出现“正面是奇数”的概率是
理解:
①一个基本事件是一次试验的结果,且每个基本事件的概率都是,即是等可能的;
②公式是求解公式,也是等可能性事件的概率的定义,它与随机事件的频率有本质区别;
③可以从集合的观点来考察事件的概率:.
事件
事件
三、讲解范例:
例1.一个口袋内有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球,
(1)共有多少种不同的结果?
(2)摸出2个黑球多少种不同的结果?
(3)摸出2个黑球的概率是多少?
解:(1)从袋中摸出2个球,共有种不同结果
(2)从3个黑球中摸出2个球,共有种不同结果;
(3)由于口袋内4个球的大小相等,从中摸出2个球的6种结果是等可能的,又因为在这6种结果中,摸出2个黑球的结果有3种,
所以,从中摸出2个黑球的概率.
点评:本题的第(2),(3)小题都是在从4个球中任取2个球所组成集合的基础上考虑的,在内容上完全相仿;
不同的是第(2)题求的是相应于的子集的元素个数,而第(3)小题求的是相应于的子集的概率.
例2.将骰子先后抛掷2次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的数之和是5的结果有多少种?
(3)向上的数之和是5的概率是多少?
解:(1)将骰子抛掷1次,它落地时向上的数有,1,2,3,4,5,6这6种结果,
根据分步计数原理,一共有种结果
(2)在上面的所有结果中,向上的数之和为5的结果有,
4种,其中括号内的前、后2个数分别为第1、2次抛掷向上的数,上面的结果可用下图表示,其中不在线段上的各数为相应的2次抛掷后向上的数之和
(3)由于骰子是均匀的,将它抛掷2次的所有36种结果是等可能出现的,其中向上的数之和是5的结果(记为事件)有4种,
因此,所求概率.
例3.袋中有4个白球和5个黑球,连续从中取出3个球,计算:
(1)“取后放回,且顺序为黑白黑”的概率;
(2)“取后不放回,且取出2黑1白”的概率
解:(1)设所有的基本事件组成集合,,
“取后放回且顺序为黑白黑”事件构成集合,,
∴.
(2)设所有的基本事件组成集合,,“取后不放回且取出2黑1白”事件构成集合,,
∴
四、课堂练习:
1.个同学随机地坐成一排,其中甲、乙坐在一起的概率为 ( )
2.在电话号码中后四个数全不相同的概率为 ( )
3.从6台原装计算机和5台组装计算机中任意选取5台参加展览,其中至少有原装与组装计算机各2台的概率为 ( )
[来
4.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为 .
5.在一次问题抢答的游戏中,要求找出对每个问题所列出的4个答案中唯一的答案,其抢答者随意说出了一个问题的答案,这个答案恰好是正确答案的概率为 .
6.从其中含有4个次品的1000个螺钉中任取1个,它是次品的概率为 .
7.从甲地到乙地有、、共3条路线,从乙地到丙地有、共2条路线,其中是从甲地到丙地的最短路线,某人任选了1条从甲地到丙地的路线,它正好是最短路 线的概率为 .
8.有100张卡片(从1号到100号),从中任取1张,计算:
⑴取到卡片号是7的倍数的情况有多少种?
⑵取到卡片号是7的倍数的概率是多少?
9.将一枚硬币连掷3次,出现“2个正面、1个反面”和“1个正面、2个反面”的概率各是多少?
10.第1小组有足球票3张、篮球票2张,第2小组有足球票2张、篮球票3张,甲从第1小组的5张票和乙从第2小组的5张票中各任抽1张,两人都抽到足球票的概率是多少?
11.将骰子先后抛掷2次,计算:出现“向上的数之和为5的倍数”其概率是多少?
答案:1. B 2. B 3. A 4. 5. 6.
7. 8. ⑴14; ⑵14%. 9. 10.
11.由于骰子是均匀的,将它抛掷2次的所有36种结果是等可能出现的,其中向上的数之和是5的倍数结果(记为事件)有4+3=7种,
因此,所求概率
五、小结 :1.基本事件、等可能性事件的概念;2.等可能性事件的概率
六、课后作业:
七、板书设计(略)
八、课后记:
相关文档
- 2017-2018学年广东省广州市天河区2021-11-1011页
- 北师大版数学九年级上册同步课件-22021-11-1024页
- 2020年福建省福州市中考数学二检试2021-11-1016页
- 2017年台湾省中考数学试卷2021-11-1026页
- 2017年江苏省扬州市中考数学试卷2021-11-1031页
- 2013年浙江省台州市中考数学试题(含2021-11-1016页
- 人教版九年级数学上册第24章复习课2021-11-10144页
- 2019重庆市中考数学试题(B卷)(Word解2021-11-109页
- 2020年北京市中考数学真题试题(含答2021-11-1024页
- 广东省深圳市罗湖区2020-2021学年2021-11-108页