- 217.84 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020年中考数学选择填空压轴题汇编:几何综合结论
1.(2020深圳)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:
①EF⊥BG;
②GE=GF;
③△GDK和△GKH的面积相等;
④当点F与点C重合时,∠DEF=75°,
其中正确的结论共有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:如图,连接BE,设EF与BG交于点O,
∵将纸片折叠,使点B落在边AD的延长线上的点G处,
∴EF垂直平分BG,
∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,
∵AD∥BC,
∴∠EGO=∠FBO,
又∵∠EOG=∠BOF,
∴△BOF≌△GOE(ASA),
∴BF=EG,
∴BF=EG=GF,故②正确,
∵BE=EG=BF=FG,
∴四边形BEGF是菱形,
∴∠BEF=∠GEF,
当点F与点C重合时,则BF=BC=BE=12,
∵sin∠AEB=ABBE=612=12,
∴∠AEB=30°,
∴∠DEF=75°,故④正确,
由题意无法证明△GDK和△GKH的面积相等,故③错误;
故选:C.
2.(2020贵州铜仁)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=2,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为172;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是( )
A.①②③ B.①③ C.①② D.②③
【解答】解:如图,在正方形ABCD中,AD∥BC,AB=BC=AD=4,∠B=∠BAD=90°,
∴∠HAD=90°,
∵HF∥AD,
∴∠H=90°,
∵∠HAF=90°﹣∠DAM=45°,
∴∠AFH=∠HAF.
∵AF=2,
∴AH=HF=1=BE.
∴EH=AE+AH=AB﹣BE+AH=4=BC,
∴△EHF≌△CBE(SAS),
∴EF=EC,∠HEF=∠BCE,
∵∠BCE+∠BEC=90°,
∴HEF+∠BEC=90°,
∴∠FEC=90°,
∴△CEF是等腰直角三角形,
在Rt△CBE中,BE=1,BC=4,
∴EC2=BE2+BC2=17,
∴S△ECF=12EF•EC=12EC2=172,故①正确;
过点F作FQ⊥BC于Q,交AD于P,
∴∠APF=90°=∠H=∠HAD,
∴四边形APFH是矩形,
∵AH=HF,
∴矩形AHFP是正方形,
∴AP=PH=AH=1,
同理:四边形ABQP是矩形,
∴PQ=AB=4,BQ=AP1,FQ=FP+PQ=5,CQ=BC﹣BQ=3,
∵AD∥BC,
∴△FPG∽△FQC,
∴FPFQ=PGCQ,
∴15=PG3,
∴PG=35,
∴AG=AP+PG=85,
在Rt△EAG中,根据勾股定理得,EG=AG2+AE2=175,
∴△AEG的周长为AG+EG+AE=85+175+3=8,故②正确;
∵AD=4,
∴DG=AD﹣AG=125,
∴DG2+BE2=14425+1=16925,
∵EG2=(175)2=28925≠16925,
∴EG2≠DG2+BE2,故③错误,
∴正确的有①②,
故选:C.
3.(2020黑龙江鹤岗)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=2BE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:
①∠ECF=45°;
②△AEG的周长为(1+22)a;
③BE2+DG2=EG2;
④△EAF的面积的最大值是18a2;
⑤当BE=13a时,G是线段AD的中点.
其中正确的结论是( )
A.①②③ B.②④⑤ C.①③④ D.①④⑤
【解答】解:如图1中,在BC上截取BH=BE,连接EH.
∵BE=BH,∠EBH=90°,
∴EH=2BE,
∵AF=2BE,
∴AF=EH,
∵∠DAM=∠EHB=45°,∠BAD=90°,
∴∠FAE=∠EHC=135°,
∵BA=BC,BE=BH,
∴AE=HC,
∴△FAE≌△EHC(SAS),
∴EF=EC,∠AEF=∠ECH,
∵∠ECH+∠CEB=90°,
∴∠AEF+∠CEB=90°,
∴∠FEC=90°,
∴∠ECF=∠EFC=45°,故①正确,
如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),
∴∠ECB=∠DCH,
∴∠ECH=∠BCD=90°,
∴∠ECG=∠GCH=45°,
∵CG=CG,CE=CH,
∴△GCE≌△GCH(SAS),
∴EG=GH,
∵GH=DG+DH,DH=BE,
∴EG=BE+DG,故③错误,
∴△AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,
设BE=x,则AE=a﹣x,AF=2x,
∴S△AEF=12•(a﹣x)×x=-12x2+12ax=-12(x2﹣ax+14a2-14a2)=-12(x-12a)2+18a2,
∵-12<0,
∴x=12a时,△AEF的面积的最大值为18a2.故④正确,
当BE=13a时,设DG=x,则EG=x+13a,
在Rt△AEG中,则有(x+13a)2=(a﹣x)2+(23a)2,
解得x=a2,
∴AG=GD,故⑤正确,
故选:D.
4.(2020黑龙江绥化)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:
①DE=12BC;
②四边形DBCF是平行四边形;
③EF=EG;
④BC=25.
其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【解答】解;∵CD为斜边AB的中线,
∴AD=BD,
∵∠ACB=90°,
∴BC⊥AC,
∵DE⊥AC,
∴DE∥BC,
∴DE是△ABC的中位线,
∴AE=CE,DE=12BC;①正确;
∵EF=DE,
∴DF=BC,
∴四边形DBCF是平行四边形;②正确;
∴CF∥BD,CF=BD,
∵∠ACB=90°,CD为斜边AB的中线,
∴CD=12AB=BD,
∴CF=CD,
∴∠CFE=∠CDE,
∵∠CDE+∠EGC=180°,∠EGF+∠EGC=180°,
∴∠CDE=∠EGF,
∴∠CFE=∠EGF,
∴EF=EG,③正确;
作EH⊥FG于H,如图所示:
则∠EHF=∠CHE=90°,∠HEF+∠EFH=∠HEF+∠CEH=90°,FH=GH=12FG=1,
∴∠EFH=∠CEH,CH=GC+GH=3+1=4,
∴△EFH∽△CEH,
∴EHCH=FHEH,
∴EH2=CH×FH=4×1=4,
∴EH=2,
∴EF=FH2+EH2=12+22=5,
∴BC=2DE=2EF=25,④正确;
故选:D.
5.(2020湖北随州)如图,已知矩形ABCD中,AB=3,BC=4,点M,N分别在边AD,BC上,沿着MN折叠矩形ABCD,使点A,B分别落在E,F处,且点F在线段CD上(不与两端点重合),过点M作MH⊥BC于点H,连接BF,给出下列判断:
①△MHN∽△BCF;
②折痕MN的长度的取值范围为3<MN<154;
③当四边形CDMH为正方形时,N为HC的中点;
④若DF=13DC,则折叠后重叠部分的面积为5512.
其中正确的是 ①②③④ .(写出所有正确判断的序号)
【解答】解:①如图1,由折叠可知BF⊥MN,
∴∠BOM=90°,
∵MH⊥BC,
∴∠BHP=90°=∠BOM,
∵∠BPH=∠OPM,
∴∠CBF=∠NMH,
∵∠MHN=∠C=90°,
∴△MHN∽△BCF,
故①正确;
②当F与C重合时,MN=3,此时MN最小,
当F与D重合时,如图2,此时MN最大,
由勾股定理得:BD=5,
∵OB=OD=52,
∵tan∠DBC=ONOB=CDBC,即ON52=34,
∴ON=158,
∵AD∥BC,
∴∠MDO=∠OBN,
在△MOD和△NOB中,
∵∠MDO=∠OBNOD=OB∠DOM=∠BON,
∴△DOM≌△BON(ASA),
∴OM=ON,
∴MN=2ON=154,
∵点F在线段CD上(不与两端点重合),
∴折痕MN的长度的取值范围为3<MN<154;
故②正确;
③如图3,连接BM,FM,
当四边形CDMH为正方形时,MH=CH=CD=DM=3,
∵AD=BC=4,
∴AM=BH=1,
由勾股定理得:BM=32+12=10,
∴FM=10,
∴DF=FM2-DM2=(10)2-32=1,
∴CF=3﹣1=2,
设HN=x,则BN=FN=x+1,
在Rt△CNF中,CN2+CF2=FN2,
∴(3﹣x)2+22=(x+1)2,
解得:x=32,
∴HN=32,
∵CH=3,
∴CN=HN=32,
∴N为HC的中点;
故③正确;
④如图4,连接FM,
∵DF=13DC,CD=3,
∴DF=1,CF=2,
∴BF=22+42=25,
∴OF=5,
设FN=a,则BN=a,CN=4﹣a,
由勾股定理得:FN2=CN2+CF2,
∴a2=(4﹣a)2+22,
∴a=52,
∴BN=FN=52,CN=32,
∵∠NFE=∠CFN+∠DFQ=90°,
∠CFN+∠CNF=90°,
∴∠DFQ=∠CNF,
∵∠D=∠C=90°,
∴△QDF∽△FCN,
∴QDFC=DFCN,即QD2=132,
∴QD=43,
∴FQ=12+(43)2=53,
∵tan∠HMN=tan∠CBF=HNHM=CFBC,
∴HN3=24,
∴HN=32,
∴MN=32+(32)2=352,
∵CH=MD=HN+CN=32+32=3,
∴MQ=3-43=53,
∴折叠后重叠部分的面积为:S△MNF+S△MQF=12⋅MN⋅OF+12⋅MQ⋅DF=12×352×5+12×53×1=5512;
故④正确;
所以本题正确的结论有:①②③④;
故答案为:①②③④.
6.(2020湖北仙桃)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:如图,作AM⊥BD于M,AN⊥EC于N.
∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS),
∴EC=BD,∠BDA=∠AEC,故①正确
∵∠DOF=∠AOE,
∠DFO=∠EAO=90°,
∴BD⊥EC,故②正确,
∵△BAD≌△CAE,AM⊥BD,AN⊥EC,
∴AM=AN,
∴FA平分∠EFB,
∴∠AFE=45°,故④正确,
若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,显然与条件矛盾,故③错误,
故选:C.
7.(2020湖北咸宁)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:
①△ABE∽△ECG;
②AE=EF;
③∠DAF=∠CFE;
④△CEF的面积的最大值为1.
其中正确结论的序号是 ①②③ .(把正确结论的序号都填上)
【解答】解:①∵四边形ABCD是正方形,
∴∠B=∠ECG=90°,
∵∠AEF=90°,
∴∠AEB+∠CEG=∠AEB+∠BAE,
∴∠BAE=∠CEG,
∴△ABE∽△ECG,
故①正确;
②在BA上截取BM=BE,如图1,
∵四边形ABCD为正方形,
∴∠B=90°,BA=BC,
∴△BEM为等腰直角三角形,
∴∠BME=45°,
∴∠AME=135°,
∵BA﹣BM=BC﹣BE,
∴AM=CE,
∵CF为正方形外角平分线,
∴∠DCF=45°,
∴∠ECF=135°,
∵∠AEF=90°,
∴∠AEB+∠FEC=90°,
而∠AEB+∠BAE=90°,
∴∠BAE=∠FEC,
在△AME和△ECF中
∠MAE=∠CEFAM=EC∠AME=∠ECF,
∴△AME≌△ECF,
∴AE=EF,
故②正确;
③∵AE=EF,∠AEF=90°,
∴∠EAF=45°,
∴∠BAE+∠DAF=45°,
∵∠BAE+∠CFE=∠CEF+∠CFE=45°,
∴∠DAF=∠CFE,
故③正确;
④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,
S△ECF=S△AME=12•x•(2﹣x)=-12(x﹣1)2+12,
当x=1时,S△ECF有最大值12,
故④错误.
故答案为:①②③.
8.(2020湖南岳阳)如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为AM上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是 ②⑤ .(写出所有正确结论的序号)
①PB=PD;②BC的长为43π;③∠DBE=45°;④△BCF∽△PFB;⑤CF•CP为定值.
【解答】解:①连接AC,并延长AC,与BD的延长线交于点H,如图1,
∵M,C是半圆上的三等分点,
∴∠BAH=30°,
∵BD与半圆O相切于点B.
∴∠ABD=90°,
∴∠H=60°,
∵∠ACP=∠ABP,∠ACP=∠DCH,
∴∠PDB=∠H+∠DCH=∠ABP+60°,
∵∠PBD=90°﹣∠ABP,
若∠PDB=∠PBD,则∠ABP+60°=90°﹣∠ABP,
∴∠ABP=15°,
∴P点为AM的中点,这与P为AM上的一动点不完全吻合,
∴∠PDB不一定等于∠ABD,
∴PB不一定等于PD,
故①错误;
②∵M,C是半圆上的三等分点,
∴∠BOC=13×180°=60°,
∵直径AB=8,
∴OB=OC=4,
∴BC的长度=60π×4180=43π,
故②正确;
③∵∠BOC=60°,OB=OC,
∴∠ABC=60°,OB=OC=BC,
∵BE⊥OC,
∴∠OBE=∠CBE=30°,
∵∠ABD=90°,
∴∠DBE=60°,
故③错误;
④∵M、N是AB的三等分点,
∴∠BPC=30°,
∵∠CBF=30°,
但∠BFP=∠FCB,
∠PBF<∠BFC,
∴△BCF∽△PFB不成立,
故④错误;
⑤∵△BCF∽△PCB,
∴CBCP=CFCB,
∴CF•CP=CB2,
∵CB=OB=OC=12AB=4,
∴CF•CP=16,
故⑤正确.
故答案为:②⑤.
9.(2020山东德州)如图,在矩形ABCD中,AB=3+2,AD=3.把AD沿AE折叠,使点D恰好落在AB边上的D′处,再将△AED′绕点E顺时针旋转α,得到△A'ED″,使得EA′恰好经过BD′的中点F.A′D″交AB于点G,连接AA′.有如下结论:①A′F的长度是6-2;②弧D'D″的长度是5312π;③△A′AF≌△A′EG;④△AA′F∽△EGF.上述结论中,所有正确的序号是 ①②④ .
【解答】解:∵把AD沿AE折叠,使点D恰好落在AB边上的D′处,
∴∠D=∠AD'E=90°=∠DAD',AD=AD',
∴四边形ADED'是矩形,
又∵AD=AD'=3,
∴四边形ADED'是正方形,
∴AD=AD'=D'E=DE=3,AE=2AD=6,∠EAD'=∠AED'=45°,
∴D'B=AB﹣AD'=2,
∵点F是BD'中点,
∴D'F=1,
∴EF=D'E2+D'F2=3+1=2,
∵将△AED′绕点E顺时针旋转α,
∴AE=A'E=6,∠D'ED''=α,∠EA'D''=∠EAD'=45°,
∴A'F=6-2,故①正确;
∵tan∠FED'=D'FD'E=13=33,
∴∠FED'=30°
∴α=30°+45°=75°,
∴弧D'D″的长度=75°×π×3180°=5312π,故②正确;
∵AE=A'E,∠AEA'=75°,
∴∠EAA'=∠EA'A=52.5°,
∴∠A'AF=7.5°,
∵∠AA'F≠∠EA'G,∠AA'E≠∠EA'G,∠AFA'=120°≠∠EA'G,
∴△AA'F与△A'GE不全等,故③错误;
∵D'E=D''E,EG=EG,
∴Rt△ED'G≌Rt△ED''G(HL),
∴∠D'GE=∠D''GE,
∵∠AGD''=∠A'AG+∠AA'G=105°,
∴∠D'GE=52.5°=∠AA'F,
又∵∠AFA'=∠EFG,
∴△AFA'∽△EFG,故④正确,
故答案为:①②④.
10.(2020四川成都)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC、BD交于点E,连接OE交AD于点F.下列4个判断:①OE平分∠BOD;②OF=BD;③DF=2AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形.正确判断的个数是( )
A.4 B.3 C.2 D.1
【解答】解:①∵四边形ABCD是矩形,
∴EB=ED,
∵BO=DO,
∴OE平分∠BOD,
故①正确;
②∵四边形ABCD是矩形,
∴∠OAD=∠BAD=90°,
∴∠ABD+∠ADB=90°,
∵OB=OD,BE=DE,
∴OE⊥BD,
∴∠BOE+∠OBE=90°,
∴∠BOE=∠BDA,
∵∠BOD=45°,∠OAD=90°,
∴∠ADO=45°,
∴AO=AD,
∴△AOF≌△ABD(ASA),
∴OF=BD,
故②正确;
③∵△AOF≌△ABD,
∴AF=AB,
连接BF,如图1,
∴BF=2AF,
∵BE=DE,OE⊥BD,
∴DF=BF,
∴DF=2AF,
故③正确;
④根据题意作出图形,如图2,
∵G是OF的中点,∠OAF=90°,
∴AG=OG,
∴∠AOG=∠OAG,
∵∠AOD=45°,OE平分∠AOD,
∴∠AOG=∠OAG=22.5°,
∴∠FAG=67.5°,∠ADB=∠AOF=22.5°,
∵四边形ABCD是矩形,
∴EA=ED,
∴∠EAD=∠EDA=22.5°,
∴∠EAG=90°,
∵∠AGE=∠AOG+∠OAG=45°,
∴∠AEG=45°,
∴AE=AG,
∴△AEG为等腰直角三角形,
故④正确;
故选:A.
11.(2020四川攀枝花)如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交于点G,AF的中点为H,连接BG、DH.给出下列结论:
①AF⊥DE;②DG=85;③HD∥BG;④△ABG∽△DHF.
其中正确的结论有 ①④ .(请填上所有正确结论的序号)
【解答】解:∵四边形ABCD为正方形,
∴∠ADC=∠BCD=90°,AD=CD,
∵E和F分别为BC和CD中点,
∴DF=EC=2,
∴△ADF≌△DCE(SAS),
∴∠AFD=∠DEC,∠FAD=∠EDC,
∵∠EDC+∠DEC=90°,
∴∠EDC+∠AFD=90°,
∴∠DGF=90°,即DE⊥AF,故①正确;
∵AD=4,DF=12CD=2,
∴AF=42+22=25,
∴DG=AD×DF÷AF=455,故②错误;
∵H为AF中点,
∴HD=HF=12AF=5,
∴∠HDF=∠HFD,
∵AB∥DC,
∴∠HDF=∠HFD=∠BAG,
∵AG=AD2-DG2=855,AB=4,
∴ABDH=ABHF=455=AGDF,
∴△ABG~△DHF,故④正确;
∴∠ABG=∠DHF,而AB≠AG,
则∠ABG和∠AGB不相等,
故∠AGB≠∠DHF,
故HD与BG不平行,故③错误;
故答案为:①④.
12.(2020四川遂宁)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:
①∠AED+∠EAC+∠EDB=90°,
②AP=FP,
③AE=102AO,
④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,
⑤CE•EF=EQ•DE.
其中正确的结论有( )
A.5个 B.4个 C.3个 D.2个
【解答】解:如图,连接OE.
∵四边形ABCD是正方形,
∴AC⊥BD,OA=OC=OB=OD,
∴∠BOC=90°,
∵BE=EC,
∴∠EOB=∠EOC=45°,
∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,
∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确,
连接AF.
∵PF⊥AE,
∴∠APF=∠ABF=90°,
∴A,P,B,F四点共圆,
∴∠AFP=∠ABP=45°,
∴∠PAF=∠PFA=45°,
∴PA=PF,故②正确,
设BE=EC=a,则AE=5a,OA=OC=OB=OD=2a,
∴AEAO=5a2a=102,即AE=102AO,故③正确,
根据对称性可知,△OPE≌△OQE,
∴S△OEQ=12S四边形OPEQ=2,
∵OB=OD,BE=EC,
∴CD=2OE,OE⊥CD,
∴EQDQ=OECD=12,△OEQ∽△CDQ,
∴S△ODQ=4,S△CDQ=8,
∴S△CDO=12,
∴S正方形ABCD=48,故④错误,
∵∠EPF=∠DCE=90°,∠PEF=∠DEC,
∴△EPF∽△ECD,
∴EFED=PEEC,
∴EQ=PE,
∴CE•EF=EQ•DE,故⑤正确,
故选:B.