• 230.41 KB
  • 2021-11-11 发布

中考数学复习冲刺专项训练精讲:分式教学课件(初三数学章节复习课件)

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第一章 数与式 第3课 分式 中考数学复习冲刺专项训练精讲 1.分式的有关概念: (1)如果A,B分别是整式,并且B中含有________, 那么式子 叫做分式. (2)当B________时,分式 (A,B分别是整式)有意义. 一、考点知识 2.分式的基本性质: 分式的分子与分母乘(或除以)同一个________的整式, 分式的值__________.用式子表示为 或 (C≠____),其中A,B,C均为整式. 字母,B≠ 0 A B A B A A C B A  A A C B A   3.分式的运算: (1)加、减 同分母; (2)乘、除 化简. 通分 约分 不等于0 ≠ 0 不变 C 0C 【例1】代数式 有意义时,a应满足的条件是 __________. 【考点1】分式的概念及基本性质 二、例题与变式 提示:分析,要使分式有意义,则分母|a|-1≠0, 解得a≠±1. 1 a 1 a≠±1 【变式1】若分式 有意义,则实数x的取值范围 是__________ . 3 x x  x≠-3 【考点2】分式的运算 【例2】计算: 解:原式= = = = 2 2 1 b a a b a b a b                 1 b a a b a b a b a b                a b b a a b a b a b a b a b               a a b a b a b a   1 a b 【变式2】计算: 解:原式 2 2 3 6 2 6 6 9 9 a a a a a a            2 2 33 6 3 33 aa a a aa          6 2 3 3a a a              6 2 3 3 6 2 3 2 3 3 2 a a a a a a a a a a a a         【考点3】分式的化简求值 【例3】先化简,再求值: 在0,1,2,这三个数中选一个合适的代入求值. 解: 根据分式的意义,x≠0,x≠2, 所以x取1,当x=1时,原式= . 2 2 2 4 4 2 12 x x x x x x         2 22 21 12 2 2 2 x x x x x x x        原式 1 2 【变式3】已知 ( ),求 的值1 1 2x y    x y     x y y x y x x y              2 2 2 2 1 1 22 2 2 x y x yx y x y x y xy x y xy x y xy x y xy x y xy xyx y xyx y xy                    原式 由 ,得 ,所以原式 解: A组 1. (1)若整式x-2在实数范围内有意义,则实数x的取值范围 是__________ ; (2)若分式 在实数范围内有意义,则实数x的取值范围 是__________ ; (3)若分式 在实数范围内有意义,则实数x的取值范围 是 __________ . 三、过关训练 2.下列分式中不是最简分式的是(  )C 1 2x  1 2x  全体实数 x≠2 x≠±2  C. 1 A B D C. x yx y x y x y        提示: 而 , , 答案都不能约分,故选 4.计算:(1) (2) 2 23 64 x xyy   2 2 2 x x x   2 1 1 1 a a a   3.计算: x-2 a4b4 解:原式 2 2 2 3 3 3 1 4 6 3 24 8 x y xy x xy x y        2 2 2 2 2 1 x x x x x          2 1 1 1 1 1 1 a a a a a a        解:原式 解:原式 (3) B组 5.已知 ,当x=________时,A=0; 当x=________时,A无意义. -2 2 2 4 4 4 xA x x    2 提示:先化简原式= , 当A=0时,分子x+2=0.解得x=-2. 当A无意义时,分母x-2=0,解得x=2.      2 22 2 24 2 4 4 22 x xx x x x xx       6.计算:(1) 解:原式 解:原式  2 1 1 33 1 x xx x        2 2 2 2 4 4 1 2 4 2 x x x x x x x             1 1 33 1 1 1 1 33 1 3 1 31 1 1 1 2 1 x xx x x xx x x x x x x x x                                  2 2 22 1 2 22 1 1 2 3 2 x xx x x xx x x x         (2) 7.已知 (1)化简A; (2)当x满足不等式1≤x<3,且x为整数时,求A的值. 解:(1) (2)由已知,得x=1或2, 但x不能取1,所以x=2. 当x=2时, . 2 2 2 1 1 1 x x xA x x          21 1 1 1 1 1 1 1 1 x x x xA x x x x x x            1 12 1A   C组 8.已知 求 的值. 解:由已知,得y-x=4xy,x-y=-4xy. 原式= 另解: 原式= 2 14 2 2 x xy y x xy y     1 1 4x y        2 14 2 4 14 22 11 2 4 2 6 3 x y xy xy xy xy x y xy xy xy xy             1 12 14 2 2 14 8 14 11 2 4 2 31 1 2 x xy y x yxy x xy y xy x y                    