• 860.50 KB
  • 2021-11-11 发布

绵阳市中考数学试题含答案解析

  • 21页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
四川省绵阳市2018年中考数学试卷 一、选择题 ‎1.(-2018)0的值是(     )    ‎ A. -2018                                       B. 2018                                       C. 0                                       D. 1‎ ‎【答案】D ‎ ‎【考点】0指数幂的运算性质 ‎ ‎【解析】【解答】解:∵20180=1,故答案为:D. 【分析】根据a0=1即可得出答案.‎ ‎2.四川省公布了2017年经济数据GDP排行榜,绵阳市排名全省第二,GDP总量为2075亿元。将2075亿元用科学计数法表示为(     )    ‎ A. B. C. D.‎ ‎【答案】B ‎ ‎【考点】科学记数法—表示绝对值较大的数 ‎ ‎【解析】【解答】解:∵2075亿=2.075×1011 , 故答案为:B. 【分析】由科学计数法:将一个数字表示成 a×10的n次幂的形式,其中1≤|a|<10,n为整数,由此即可得出答案.‎ ‎3.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上。如果∠2=44°,那么∠1的度数是(     )    ‎ A.14° B.15° C.16° D.17°‎ ‎【答案】C ‎ ‎【考点】平行线的性质 ‎ ‎【解析】【解答】解:如图: 依题可得:∠2=44°,∠ABC=60°,BE∥CD, ‎ ‎∴∠1=∠CBE, 又∵∠ABC=60°, ∴∠CBE=∠ABC -∠2=60°-44°=16°, 即∠1=16°. 故答案为:C. 【分析】根据两直线平行,内错角相等得∠1=∠CBE,再结合已知条件∠CBE=∠ABC -∠2,带入数值即可得∠1的度数.‎ ‎4.下列运算正确的是(     )    ‎ A. B. C. D.‎ ‎【答案】C ‎ ‎【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用 ‎ ‎【解析】【解答】解:A.∵a2·a3=a5,故错误,A不符合题意; B.a3与a2不是同类项,故不能合并,B不符合题意; C.∵(a2)4=a8,故正确,C符合题意; D.a3与a2不是同类项,故不能合并,D不符合题意 故答案为:C. 【分析】A.根据同底数幂相乘,底数不变,指数相加即可判断对错; B.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项; C.根据幂的乘方,底数不变,指数相乘即可判断对错; D.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项;‎ ‎5.下列图形中是中心对称图形的是(     ) ‎ A.                      B.                      C.                      D. ‎ ‎【答案】D ‎ ‎【考点】轴对称图形,中心对称及中心对称图形 ‎ ‎【解析】【解答】解:A.不是中心对称图形,A不符合题意; B.是轴对称图形,B不符合题意; C.不是中心对称图形,C不符合题意; D.是中心对称图形,D符合题意; 故答案为:D. 【分析】在一个平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;由此判断即可得出答案.‎ ‎6.等式 成立的x的取值范围在数轴上可表示为(     ) ‎ A. B.‎ ‎ C. D.‎ ‎【答案】B ‎ ‎【考点】二次根式有意义的条件,在数轴上表示不等式(组)的解集 ‎ ‎【解析】【解答】解:依题可得: x-3≥0且x+1〉0, ∴x≥3, 故答案为:B. 【分析】根据二次根式有意义的条件:根号里面的数应大于或等于0,如果二次根式做分母,根号里面的数只要大于0即可,解这个不等式组,并将答案在数轴上表示即可得出答案.‎ ‎7.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为(      )   ‎ A.(4,-3) B.(-4,3) C.(-3,4) D.(-3,-4)‎ ‎【答案】B ‎ ‎【考点】点的坐标,旋转的性质 ‎ ‎【解析】【解答】解:如图: 由旋转的性质可得: △AOC≌△BOD, ∴OD=OC,BD=AC, 又∵A(3,4), ∴OD=OC=3,BD=AC=4, ∵B点在第二象限, ∴B(-4,3). 故答案为:B. 【分析】建立平面直角坐标系,根据旋转的性质得△AOC≌△BOD,再由全等三角形的性质和点的坐标性质得出B点坐标,由此即可得出答案.‎ ‎8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(    )   ‎ A.9人 B.10人 C.11人 D.12人 ‎【答案】C ‎ ‎【考点】一元二次方程的应用 ‎ ‎【解析】【解答】解:设参加酒会的人数为x人,依题可得: x(x-1)=55, 化简得:x2-x-110=0, 解得:x1=11,x2=-10(舍去), 故答案为:C. 【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.‎ ‎9.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2 , 圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是(     ) ‎ A. B.40πm2              C. D.55πm2‎ ‎【答案】A ‎ ‎【考点】圆锥的计算,圆柱的计算 ‎ ‎【解析】【解答】解:设底面圆的半径为r,圆锥母线长为l,依题可得: πr2=25π, ∴r=5, ∴圆锥的母线l= = , ∴圆锥侧面积S = ·2πr·l=πrl=5 π(m2), 圆柱的侧面积S =2πr·h=2×π×5×3=30π(m2), ∴需要毛毡的面积=30π+5 π(m2), 故答案为:A. 【分析】根据圆的面积公式求出底面圆的半径,由勾股定理得圆锥母线长,再根据圆锥的侧面展开图为扇形,圆柱的侧面展开图为矩形或者正方形,根据其公式分别求出它们的侧面积,再求和即可得出答案.‎ ‎10.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据: )(     )    ‎ A. 4.64海里                           B. 5.49海里                           C. 6.12海里                           D. 6.21海里 ‎【答案】B ‎ ‎【考点】三角形内角和定理,等腰三角形的性质,解直角三角形的应用﹣方向角问题 ‎ ‎【解析】【解答】解:根据题意画出图如图所示:作BD⊥AC,取BE=CE, ∵AC=30,∠CAB=30°∠ACB=15°, ∴∠ABC=135°, 又∵BE=CE, ∴∠ACB=∠EBC=15°, ∴∠ABE=120°, 又∵∠CAB=30° ∴BA=BE,AD=DE, 设BD=x, 在Rt△ABD中, ∴AD=DE= x,AB=BE=CE=2x, ∴AC=AD+DE+EC=2 x+2x=30, ∴x= = ≈5.49, 故答案为:B. 【分析】根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE= x,AB=BE=CE=2x,由AC=AD+DE+EC=2 x+2x=30,解之即可得出答案.‎ ‎11.如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若AE= ,AD= ,则两个三角形重叠部分的面积为(     ) ‎ A. B.‎ ‎ C. D.‎ ‎【答案】D ‎ ‎【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形 ‎ ‎【解析】【解答】解:连接BD,作CH⊥DE, ∵△ACB和△ECD都是等腰直角三角形, ∴∠ACB=∠ECD=90°,∠ADC=∠CAB=45°, 即∠ACD+∠DCB=∠ACD+∠ACE=90°, ∴∠DCB=∠ACE, 在△DCB和△ECA中, , ∴△DCB≌△ECA, ∴DB=EA= ,∠CDB=∠E=45°, ∴∠CDB+∠ADC=∠ADB=90°, 在Rt△ABD中, ∴AB= =2 , 在Rt△ABC中, ∴2AC2=AB2=8, ∴AC=BC=2, 在Rt△ECD中, ∴2CD2=DE2= , ∴CD=CE= +1, ∵∠ACO=∠DCA,∠CAO=∠CDA, ∴△CAO∽△CDA, ∴ : = = =4-2 , 又∵ = CE = DE·CH, ∴CH= = , ∴ = AD·CH= × × = , ‎ ‎∴ =(4-2 )× =3- . 即两个三角形重叠部分的面积为3- . 故答案为:D. 【分析】解:连接BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由SAS得△DCB≌△ECA,根据全等三角形的性质知DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积.‎ ‎12.将全体正奇数排成一个三角形数阵 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 … … … … … … 根据以上排列规律,数阵中第25行的第20个数是(     ) ‎ A.639 B.637 C.635 D.633‎ ‎【答案】A ‎ ‎【考点】探索数与式的规律 ‎ ‎【解析】【解答】解:依题可得:第25行的第一个数为: 1+2+4+6+8+……+2×24=1+2× =601, ∴第25行的第第20个数为:601+2×19=639. 故答案为:A. 【分析】根据规律可得第25行的第一个数为,再由规律得第25行的第第20个数.‎ 二、填空题 ‎13.因式分解: ________。 ‎ ‎【答案】y(x++2y)(x-2y) ‎ ‎【考点】提公因式法因式分解,因式分解﹣运用公式法 ‎ ‎【解析】【解答】解:原式=y(x++2y)(x-2y), 故答案为:y(x++2y)(x-2y). 【分析】根据因式分解的方法——提公因式法和公式法分解即可得出答案.‎ ‎14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为________。 ‎ ‎【答案】(-2,-2) ‎ ‎【考点】点的坐标,用坐标表示地理位置 ‎ ‎【解析】【解答】解:建立平面直角坐标系(如图), ∵相(3,-1),兵(-3,1), ∴卒(-2,-2), 故答案为:(-2,-2). 【分析】根据题中相和兵的坐标确定原点位置,建立平面直角坐标系,从而得出卒的坐标.‎ ‎15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能够构成三角形的概率是________。 ‎ ‎【答案】‎ ‎【考点】列表法与树状图法 ‎ ‎【解析】【解答】解:从5根木条中任取3根的所有情况为:1、2、3;1、2、4;1、2、5;1、3、4;1、3、5;1、4、5;2、3、4;2、3、5;2、4、5;3、4、5;共10种情况; ∵能够构成三角形的情况有:2、3、4;2、4、5;3、4、5;共3种情况; ∴能够构成三角形的概率为: . 故答案为: . 【分析】根据题意先列出从5根木条中任取3根的所有情况数,再根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,找出能够构成三角形的情况数,再由概率公式求解即可.‎ ‎16.右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。 ‎ ‎【答案】4 -4 ‎ ‎【考点】二次函数的实际应用-拱桥问题 ‎ ‎【解析】【解答】解:根据题意以AB为x轴,AB的垂直平分线为y轴建立平面直角坐标系(如图), 依题可得:A(-2,0),B(2,0),C(0,2), 设经过A、B、C三点的抛物线解析式为:y=a(x-2)(x+2), ∵C(0,2)在此抛物线上, ∴a=- , ∴此抛物线解析式为:y=- (x-2)(x+2), ∵水面下降2m, ∴- (x-2)(x+2)=-2, ∴x1=2 ,x2=-2 , ∴下降之后的水面宽为:4 . ∴水面宽度增加了:4 -4. 故答案为:4 -4. 【分析】根据题意以AB为x轴,AB的垂直平分线为y轴建立平面直角坐标系(如图),依题可得:A(-2,0),B(2,0),C(0,2),再根据待定系数法求出经过A、B、C三点的抛物线解析式y=- (x-2)(x+2);由水面下降2m,求出下降之后的水面宽度,从而得出水面宽度增加值.‎ ‎17.已知a>b>0,且 ,则 ________。 ‎ ‎【答案】‎ ‎【考点】解分式方程,换元法解一元二次方程 ‎ ‎【解析】【解答】解: ∵ + + =0, 两边同时乘以ab(b-a)得: a2-2ab-2b2=0, 两边同时除以a2得: 2( ) 2+2 -1=0, 令t= (t〉0), ∴2t2+2t-1=0, ∴t= , ∴t= = . ‎ 故答案为: . 【分析】等式两边同时乘以ab(b-a)得:a2-2ab-2b2=0,两边同时除以a 得: 2( )2+2 -1=0,解此一元二次方程即可得答案.‎ ‎18.如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于点O,则AB=________. ‎ ‎【答案】‎ ‎【考点】勾股定理,三角形中位线定理,相似三角形的判定与性质 ‎ ‎【解析】【解答】解:连接DE, ∵AD、BE为三角形中线, ∴DE∥AB,DE= AB, ∴△DOE∽△AOB, ∴ = = = , 设OD=x,OE=y, ∴OA=2x,OB=2y, 在Rt△BOD中, x2+4y 2=4  ①, 在Rt△AOE中, 4x2+y2=  ②, ∴①+ ②得: 5x2+5y2= , ∴x2+y2= , 在Rt△AOB中, ∴AB2=4x2+4y2=4(x2+y 2)=4× , 即AB= . 故答案为: . 【分析】连接DE,根据三角形中位线性质得DE∥AB,DE= AB,从而得△DOE∽△AOB ‎,根据相似三角形的性质可得 = = = ;设OD=x,OE=y,从而可知OA=2x,OB=2y,根据勾股定理可得x2+4y2=4,4x2+y2= ,两式相加可得x2+y2= ,在Rt△AOB中,由股股定理可得AB= .‎ 三、解答题。‎ ‎19.      ‎ ‎(1)计算: ‎ ‎(2)解分式方程: ‎ ‎【答案】(1)原式= ×3 - × +2- + , = - +2- + , =2. (2)方程两边同时乘以x-2得: x-1+2(x-2)=-3, 去括号得:x-1+2x-4=-3, 移项得:x+2x=-3+1+4, 合并同类项得:3x=2, 系数化为1得:x= . 检验:将x= 代入最简公分母不为0,故是原分式方程的根, ∴原分式方程的解为:x= . ‎ ‎【考点】实数的运算,解分式方程 ‎ ‎【解析】【分析】将分式方程转化成整式方程,再按照去括号——移项——合并同类项——系数化为1即可得出答案,经检验是原分式方程的根.‎ ‎20.绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图: 设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为“不称职”,当 时为“基本称职”,当 时为“称职”,当 时为“优秀”。根据以上信息,解答下列问题: ‎ ‎(1)补全折线统计图和扇形统计图; ‎ ‎(2)求所有“称职”和“优秀”的销售员销售额的中位数和众数; ‎ ‎(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一般人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由。 ‎ ‎【答案】(1)解:(1)依题可得: “不称职”人数为:2+2=4(人), “基本称职”人数为:2+3+3+2=10(人), “称职”人数为:4+5+4+3+4=20(人), ∴总人数为:20÷50%=40(人), ∴不称职”百分比:a=4÷40=10%, “基本称职”百分比:b=10÷40=25%, “优秀”百分比:d=1-10%-25%-50%=15%, ∴“优秀”人数为:40×15%=6(人), ∴得26分的人数为:6-2-1-1=2(人), 补全统计图如图所示: (2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万. ∵“称职”和“优秀”的销售员月销售额的中位数为:22万, ∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元. ‎ ‎【考点】扇形统计图,折线统计图,中位数,众数 ‎ ‎【解析】【分析】(1)由折线统计图可知:“称职”人数为20人,由扇形统计图可知:“称职”百分比为50%,根据总人数=频数÷频率即可得,再根据频率=频数÷总数即可得各部分的百分比,从而补全扇形统计图;由频数=总数×频率可得“优秀”人数为6人,结合折线统计图可得 得26分的人数为2人,从而补全折线统计图.(2)由折线统计图可知:“称职”和“优秀”各人数,再根据中位数和众数定义即可得答案.(3)由(2)知“称职”和“优秀”的销售员月销售额的中位数,根据题意即可知月销售额奖励标准.‎ ‎21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨。 ‎ ‎(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨? ‎ ‎(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费话费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用? ‎ ‎【答案】(1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得: , 解得: . ‎ 答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货 吨。 (2)解:设大货车有m辆,则小货车10-m辆,依题可得: 4m+ (10-m)≥33 m≥0 10-m≥0 解得: ≤m≤10, ∴m=8,9,10; ∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆; 当大货车10辆时,则小货车0辆; 设运费为W=130m+100(10-m)=30m+1000, ∵k=30〉0, ∴W随x的增大而增大, ∴当m=8时,运费最少, ∴W=30×8+1000=1240(元), 答:货运公司应安排大货车8辆时,小货车2辆时最节省费用. ‎ ‎【考点】二元一次方程组的其他应用,一次函数的实际应用 ‎ ‎【解析】【分析】(1)设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨可列出二元一次方程组,解之即可得出答案.(2)设大货车有m辆,则小货车10-m辆,根据题意可列出一元一次不等式组,解之即可得出m范围,从而得出派车方案,再由题意可得W=130m+100(10-m)=30m+1000,根据一次函数的性质,k〉0,W随x的增大而增大,从而得当m=8时,运费最少.‎ ‎22.如图,一次函数 的图像与反比例函数 的图像交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1. ‎ ‎(1)求反比例函数的解析式; ‎ ‎(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标。 ‎ ‎【答案】(1)解:(1)设A(x,y) ∵A点在反比例函数上, ∴k=xy, 又∵ = .OM·AM= ·x·y= k=1, ∴k=2. ∴反比例函数解析式为:y= . (2)解:作A关于y轴的对称点A′,连接A′B交y轴于点P,PA+PB的最小值即为A′B. ‎ ‎ ∴ , ∴ 或 . ∴A(1,2),B(4, ), ∴A′(-1,2), ∴PA+PB=A′B= = . 设A′B直线解析式为:y=ax+b, ∴ , ∴ , ∴A′B直线解析式为:y=- x+ , ∴P(0, ). ‎ ‎【考点】待定系数法求一次函数解析式,反比例函数系数k的几何意义,待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题 ‎ ‎【解析】【分析】(1)设A(x,y),A在反比例函数解析式上,由反比例函数k的几何意义可得k=2,从而得反比例函数解析式.(2)作A关于y轴的对称点A′,连接A′B交y轴于点P,PA+PB的最小值即为A′B.联立反比例函数和一次函数解析式,得出A(1,2),B(4, ),从而得A′(-1.2),根据两点间距离公式得PA+PB=A′B的值;再设A′B直线解析式为:y=ax+b,根据待定系数法求得 A′B直线解析式,从而得点P坐标.‎ ‎23.如图,AB是 的直径,点D在 上(点D不与A,B重合),直线AD交过点B的切线于点C,过点D作 的切线DE交BC于点E。 ‎ ‎(1)求证:BE=CE; ‎ ‎(2)若DE平行AB,求 的值。 ‎ ‎【答案】(1)证明:连接OD、BD, ∵EB、ED分别为圆O的切线, ∴ED=EB, ∴∠EDB=∠EBD, 又∵AB为圆O的直径, ∴BD⊥AC, ∴∠BDE+∠CDE=∠EBD+∠DCE, ∴∠CDE=∠DCE, ∴ED=EC, ∴EB=EC. (2)解:过O作OH⊥AC,设圆O半径为r, ∵DE∥AB,DE、EB分别为圆O的切线, ∴四边形ODEB为正方形, ∵O为AB中点, ∴D、E分别为AC、BC的中点, ∴BC=2r,AC=2 r, 在Rt△COB中, ∴OC= r, 又∵ = ·AO·BC= ·AC·OH, ∴r×2r=2 r×OH, ∴OH= r, 在Rt△COH中, ∴sin∠ACO= = = . ‎ ‎【考点】三角形的面积,正方形的判定与性质,圆周角定理,锐角三角函数的定义,切线长定理 ‎ ‎【解析】【分析】(1)证明:连接OD、BD,由切线长定理得ED=EB,由等腰三角形性质得∠EDB=∠EBD;根据圆周角定理得BD⊥AC,由等角的余角相等得∠CDE=∠DCE,再由等腰三角形性质和等量代换可得EB=EC.(2)过O作OH⊥AC,设圆O半径为r,根据切线长定理和正方形的判定可得四边形ODEB为正方形,从而得出D、E分别为AC、BC的中点,从而得BC=2r,AC=2 r,在Rt△COB中, ‎ 再根据勾股定理得OC= r;由 = ·AO·BC= .AC.OH求出OH= r,在Rt△COH中, 根据锐角三角函数正弦的定义即可得出答案.‎ ‎24.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0)。动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒。连接MN。 ‎ ‎(1)求直线BC的解析式; ‎ ‎(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标; ‎ ‎(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式。 ‎ ‎【答案】(1)解:设直线BC解析式为:y=kx+b, ∵B(0,4),C(-3,0), ∴ , 解得: ∴直线BC解析式为:y= x+4. (2)解:依题可得:AM=AN=t, ∵△AMN沿直线MN翻折,点A与点点D重合, ∴四边形AMDN为菱形, 作NF⊥x轴,连接AD交MN于O′, ∵A(3,0),B(0,4), ∴OA=3,OB=4, ∴AB=5, ∴M(3-t,0), 又∵△ANF∽△ABO, ∴ = = , ∴ = = , ∴AF= t,NF= t, ‎ ‎∴N(3- t, t), ∴O′(3- t, t), 设D(x,y), ∴ =3- t, = t, ∴x=3- t,y= t, ∴D(3- t, t), 又∵D在直线BC上, ∴ ×(3- t)+4= t, ∴t= , ∴D(- , ). (3)①当0