• 352.00 KB
  • 2021-11-11 发布

2016年湖北省荆门市中考数学试卷

  • 18页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2016年湖北省荆门市中考数学试卷 一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,有且只有一个答案是正确的)‎ ‎1.2的绝对值是(  )‎ A.2 B.﹣2 C. D.﹣‎ ‎【考点】绝对值.‎ ‎【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.‎ ‎【解答】解:∵2>0,‎ ‎∴|2|=2.‎ 故选:A.‎ ‎ ‎ ‎2.下列运算正确的是(  )‎ A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2D.(a﹣3)2=a2﹣9‎ ‎【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.‎ ‎【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等余平方和减积的二倍,可得答案.‎ ‎【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;‎ B、积的乘方等于乘方的积,故B正确;‎ C、同底数幂的除法底数不变指数相减,故C错误;‎ D、差的平方等余平方和减积的二倍,故D错误;‎ 故选:B.‎ ‎ ‎ ‎3.要使式子有意义,则x的取值范围是(  )‎ A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1‎ ‎【考点】二次根式有意义的条件.‎ ‎【分析】直接利用二次根式有意义的条件进而得出x﹣1≥0,求出答案.‎ ‎【解答】解:要使式子有意义,‎ 故x﹣1≥0,‎ 解得:x≥1.‎ 则x的取值范围是:x≥1.‎ 故选:C.‎ ‎ ‎ ‎4.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为(  )‎ A.5 B.6 C.8 D.10‎ ‎【考点】勾股定理;等腰三角形的性质.‎ ‎【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.‎ ‎【解答】解:∵AB=AC,AD是∠BAC的平分线,‎ ‎∴AD⊥BC,BD=CD,‎ ‎∵AB=5,AD=3,‎ ‎∴BD==4,‎ ‎∴BC=2BD=8,‎ 故选C.‎ ‎ ‎ ‎5.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是(  )‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎【考点】点的坐标.‎ ‎【分析】根据各象限内点的坐标特征解答即可.‎ ‎【解答】解:∵点A(a,﹣b)在第一象限内,‎ ‎∴a>0,﹣b>0,‎ ‎∴b<0,‎ ‎∴点B(a,b)所在的象限是第四象限.‎ 故选D.‎ ‎ ‎ ‎6.由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是(  )‎ A.主视图的面积最小 B.左视图的面积最小 C.俯视图的面积最小 D.三个视图的面积相等 ‎【考点】简单组合体的三视图.‎ ‎【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得答案.‎ ‎【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,主视图的面积是4;‎ 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积为3;‎ 从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,俯视图的面积是4,‎ 左视图面积最小,故B正确;‎ 故选:B.‎ ‎ ‎ ‎7.化简的结果是(  )‎ A. B. C.x+1 D.x﹣1‎ ‎【考点】分式的混合运算.‎ ‎【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.‎ ‎【解答】解:原式=÷=•=,‎ 故选A ‎ ‎ ‎8.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是(  )‎ A. B. C. D.‎ ‎【考点】动点问题的函数图象.‎ ‎【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.‎ ‎【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,‎ 当P点由B运动到C点时,即2<x<4时,y=×2×2=2,‎ 符合题意的函数关系的图象是A;‎ 故选:A.‎ ‎ ‎ ‎9.已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为(  )‎ A.7 B.10 C.11 D.10或11‎ ‎【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.‎ ‎【分析】把x=3代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.‎ ‎【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,‎ 解得m=6,‎ 则原方程为x2﹣7x+12=0,‎ 解得x1=3,x2=4,‎ 因为这个方程的两个根恰好是等腰△ABC的两条边长,‎ ‎①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;‎ ‎②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.‎ 综上所述,该△ABC的周长为10或11.‎ 故选:D.‎ ‎ ‎ ‎10.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为(  )‎ A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7‎ ‎【考点】二次函数的性质;解一元二次方程-因式分解法.‎ ‎【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.‎ ‎【解答】解:∵二次函数y=x2+mx的对称轴是x=3,‎ ‎∴﹣=3,解得m=﹣6,‎ ‎∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.‎ 故选D.‎ ‎ ‎ ‎11.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是(  )‎ A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF ‎【考点】矩形的性质;全等三角形的判定.‎ ‎【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.‎ ‎【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,‎ ‎∴∠ADF=∠DEC.‎ 又∵DE=AD,‎ ‎∴△AFD≌△DCE(AAS),故(A)正确;‎ ‎(B)∵∠ADF不一定等于30°,‎ ‎∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;‎ ‎(C)由△AFD≌△DCE,可得AF=CD,‎ 由矩形ABCD,可得AB=CD,‎ ‎∴AB=AF,故(C)正确;‎ ‎(D)由△AFD≌△DCE,可得CE=DF,‎ 由矩形ABCD,可得BC=AD,‎ 又∵BE=BC﹣EC,‎ ‎∴BE=AD﹣DF,故(D)正确;‎ 故选(B)‎ ‎ ‎ ‎12.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是(  )‎ A.12cm B.6cm C.3cm D.2cm ‎【考点】圆锥的计算.‎ ‎【分析】圆的半径为2,那么过圆心向AC引垂线,利用相应的三角函数可得AC的一半的长度,进而求得AC的长度,利用弧长公式可求得弧BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.‎ ‎【解答】解:作OD⊥AC于点D,连接OA,‎ ‎∴∠OAD=45°,AC=2AD,‎ ‎∴AC=2(OA×cos45°)=12cm,‎ ‎∴=6π ‎∴圆锥的底面圆的半径=6π÷(2π)=3cm.‎ 故选C.‎ ‎ ‎ 二、填空题(本题共5小题,每小题3分,共15分)‎ ‎13.分解因式:(m+1)(m﹣9)+8m= (m+3)(m﹣3) .‎ ‎【考点】因式分解-运用公式法.‎ ‎【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.‎ ‎【解答】解:(m+1)(m﹣9)+8m,‎ ‎=m2﹣9m+m﹣9+8m,‎ ‎=m2﹣9,‎ ‎=(m+3)(m﹣3).‎ 故答案为:(m+3)(m﹣3).‎ ‎ ‎ ‎14.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有 16 台.‎ ‎【考点】一元一次方程的应用.‎ ‎【分析】设购置的笔记本电脑有x台,则购置的台式电脑为台.根据笔记本电脑的台数比台式电脑的台数的还少5台,可列出关于x的一元一次方程,解方程即可得出结论.‎ ‎【解答】解:设购置的笔记本电脑有x台,则购置的台式电脑为台,‎ 依题意得:x=﹣5,即20﹣x=0,‎ 解得:x=16.‎ ‎∴购置的笔记本电脑有16台.‎ 故答案为:16.‎ ‎ ‎ ‎15.荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是  .‎ ‎【考点】列表法与树状图法.‎ ‎【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到一男一女的情况,再利用概率公式即可求得答案.‎ ‎【解答】解:画树状图如下:‎ 由树状图可知共有20种等可能性结果,其中抽到一男一女的情况有12种,‎ 所以抽到一男一女的概率为P(一男一女)=,‎ 故答案为:.‎ ‎ ‎ ‎16.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF= 2 cm.‎ ‎【考点】旋转的性质.‎ ‎【分析】利用旋转的性质得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90°,再利用直角三角形的性质得出FC的长.‎ ‎【解答】解:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,‎ ‎∴DC=AC,∠D=∠CAB,‎ ‎∴∠D=∠DAC,‎ ‎∵∠ACB=∠DCE=90°,∠B=30°,‎ ‎∴∠D=∠CAB=60°,‎ ‎∴∠DCA=60°,‎ ‎∴∠ACF=30°,‎ 可得∠AFC=90°,‎ ‎∵AB=8cm,∴AC=4cm,‎ ‎∴FC=4cos30°=2(cm).‎ 故答案为:2.‎ ‎ ‎ ‎17.如图,已知点A(1,2)是反比例函数y=图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P的坐标是 (﹣3,0)或(5,0)或(3,0)或(﹣5,0) .‎ ‎【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.‎ ‎【分析】由对称性可知O为AB的中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x的方程,可求得x,可求得P点坐标.‎ ‎【解答】解:‎ ‎∵反比例函数y=图象关于原点对称,‎ ‎∴A、B两点关于O对称,‎ ‎∴O为AB的中点,且B(﹣1,﹣2),‎ ‎∴当△PAB为等腰三角形时有PA=AB或PB=AB,‎ 设P点坐标为(x,0),‎ ‎∵A(1,2),B(﹣1,﹣2),‎ ‎∴AB==2,PA=,PB=,‎ 当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);‎ 当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);‎ 综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),‎ 故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).‎ ‎ ‎ 三、解答题(本题共7小题,共69分)‎ ‎18.(1)计算:|1﹣|+3tan30°﹣()0﹣(﹣)﹣1.‎ ‎(2)解不等式组.‎ ‎【考点】解一元一次不等式组;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.‎ ‎【分析】(1)首先去掉绝对值符号,计算乘方,代入特殊角的三角函数值,然后进行加减计算即可;‎ ‎(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.‎ ‎【解答】解:(1)原式=﹣1+3×﹣1﹣(﹣3)=﹣1++3=2;‎ ‎(2)解①得x>﹣,‎ 解②得x≤0,‎ 则不等式组的解集是﹣<x≤0.‎ ‎ ‎ ‎19.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.‎ ‎(1)补充完成图形;‎ ‎(2)若EF∥CD,求证:∠BDC=90°.‎ ‎【考点】旋转的性质.‎ ‎【分析】(1)根据题意补全图形,如图所示;‎ ‎(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.‎ ‎【解答】解:(1)补全图形,如图所示;‎ ‎(2)由旋转的性质得:∠DCF=90°,‎ ‎∴∠DCE+∠ECF=90°,‎ ‎∵∠ACB=90°,‎ ‎∴∠DCE+∠BCD=90°,‎ ‎∴∠ECF=∠BCD,‎ ‎∵EF∥DC,‎ ‎∴∠EFC+∠DCF=180°,‎ ‎∴∠EFC=90°,‎ 在△BDC和△EFC中,‎ ‎,‎ ‎∴△BDC≌△EFC(SAS),‎ ‎∴∠BDC=∠EFC=90°.‎ ‎ ‎ ‎20.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:‎ 分 数 段 频数 频率 ‎60≤x<70‎ ‎9‎ a ‎70≤x<80‎ ‎36‎ ‎0.4‎ ‎80≤x<90‎ ‎27‎ b ‎90≤x≤100‎ c ‎0.2‎ 请根据上述统计图表,解答下列问题:‎ ‎(1)在表中,a= 0.1 ,b= 0.3 ,c= 18 ;‎ ‎(2)补全频数直方图;‎ ‎(3)根据以上选取的数据,计算七年级学生的平均成绩.‎ ‎(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?‎ ‎【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;加权平均数.‎ ‎【分析】(1)根据表格中的数据可以求得抽查的学生数,从而可以求得a、b、c的值;‎ ‎(2)根据(1)中c的值,可以将频数分布直方图补充完整;‎ ‎(3)根据平均数的定义和表格中的数据可以求得七年级学生的平均成绩;‎ ‎(4)根据表格中的数据可以求得“优秀”等次的学生数.‎ ‎【解答】解:(1)抽查的学生数:36÷0.4=90,‎ a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,‎ 故答案为:0.1,0.3,18;‎ ‎(2)补全的频数分布直方图如右图所示,‎ ‎(3)∵=81,‎ 即七年级学生的平均成绩是81分;‎ ‎(4)∵800×(0.3+0.2)=800×0.5=400,‎ 即“优秀”等次的学生约有400人.‎ ‎ ‎ ‎21.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?‎ ‎【考点】解直角三角形的应用-坡度坡角问题.‎ ‎【分析】过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,根据直角三角形的性质用x表示出AC与BC的长,再根据小明与小军同时到达山顶C处即可得出结论.‎ ‎【解答】解:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,‎ ‎∵∠A=45°,CD⊥AB,‎ ‎∴AD=CD=x米,‎ ‎∴AC=x.‎ 在Rt△BCD中,‎ ‎∵∠B=30°,‎ ‎∴BC===2x,‎ ‎∵小军的行走速度为米/秒.若小明与小军同时到达山顶C处,‎ ‎∴=,解得a=1米/秒.‎ 答:小明的行走速度是1米/秒.‎ ‎ ‎ ‎22.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.‎ ‎(1)求证:CE是⊙O的切线;‎ ‎(2)若AE=1,CE=2,求⊙O的半径.‎ ‎【考点】切线的判定;角平分线的性质.‎ ‎【分析】(1)证明:连接CO,证得∠OCA=∠CAE,由平行线的判定得到OC∥FD,再证得OC⊥CE,即可证得结论;‎ ‎(2)证明:连接BC,由圆周角定理得到∠BCA=90°,再证得△ABC∽△ACE,根据相似三角形的性质即可证得结论.‎ ‎【解答】(1)证明:连接CO,‎ ‎∵OA=OC,‎ ‎∴∠OCA=∠OAC,‎ ‎∵AC平分∠FAB,‎ ‎∴∠OCA=∠CAE,‎ ‎∴OC∥FD,‎ ‎∵CE⊥DF,‎ ‎∴OC⊥CE,‎ ‎∴CE是⊙O的切线;‎ ‎(2)证明:连接BC,‎ 在Rt△ACE中,AC===,‎ ‎∵AB是⊙O的直径,‎ ‎∴∠BCA=90°,‎ ‎∴∠BCA=∠CEA,‎ ‎∵∠CAE=∠CAB,‎ ‎∴△ABC∽△ACE,‎ ‎∴=,‎ ‎∴,‎ ‎∴AB=5,‎ ‎∴AO=2.5,即⊙O的半径为2.5.‎ ‎ ‎ ‎23.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.‎ ‎(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;‎ ‎(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;‎ ‎(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?‎ ‎【考点】一次函数的应用;一元一次不等式的应用.‎ ‎【分析】(1)A城运往C乡的化肥为x吨,则可得A城运往D乡的化肥为30﹣x吨,B城运往C乡的化肥为34﹣x吨,B城运往D乡的化肥为40﹣(34﹣x)吨,从而可得出W与x大的函数关系.‎ ‎(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同的调运方案,写出方案即可;‎ ‎(3)根据题意得到W=x+12540,所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元.于是得到结论.‎ ‎【解答】解:(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);‎ ‎(2)根据题意得140x+12540≥16460,‎ ‎∴x≥28,‎ ‎∵x≤30,‎ ‎∴28≤x≤30,‎ ‎∴有3种不同的调运方案,‎ 第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D城34台;‎ 第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D城35台;‎ 第三种调运方案:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台,‎ ‎(3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540,‎ 所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元.‎ 此时的方案为:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台.‎ ‎ ‎ ‎24.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点E作x轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F.‎ ‎(1)求点A,点B的坐标;‎ ‎(2)用含t的代数式分别表示EF和AF的长;‎ ‎(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.‎ ‎(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.‎ ‎【考点】二次函数综合题.‎ ‎【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;‎ ‎(2)由OA、OB的长可求得∠ABO=30°,用t可表示出BE,EF,和BF的长,由勾股定理可求得AB的长,从而可用t表示出AF的长;‎ ‎(3)利用菱形的性质可求得t的值,则可求得AF=AG的长,可得到=,可判定△AFG与△AGB相似;‎ ‎(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数的对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF中,可得到关于t的方程,可求得t的值,进一步可求得E点坐标,利用待定系数法可求得抛物线的解析式.‎ ‎【解答】解:‎ ‎(1)在直线y=﹣x+2中,‎ 令y=0可得0=﹣x+2,解得x=2,‎ 令x=0可得y=2,‎ ‎∴A为(2,0),B为(0,2);‎ ‎(2)由(1)可知OA=2,OB=2,‎ ‎∴tan∠ABO==,‎ ‎∴∠ABO=30°,‎ ‎∵运动时间为t秒,‎ ‎∴BE=t,‎ ‎∵EF∥x轴,‎ ‎∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t,‎ 在Rt△ABO中,OA=2,OB=2,‎ ‎∴AB=4,‎ ‎∴AF=4﹣2t;‎ ‎(3)相似.理由如下:‎ 当四边形ADEF为菱形时,则有EF=AF,‎ 即t=4﹣2t,解得t=,‎ ‎∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=,‎ 如图,过G作GH⊥x轴,交x轴于点H,‎ 则四边形OEGH为矩形,‎ ‎∴GH=OE=,‎ 又EG∥x轴,抛物线的顶点为A,‎ ‎∴OA=AH=2,‎ 在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=,‎ 又AF•AB=×4=,‎ ‎∴AF•AB=AG2,即=,且∠FAG=∠GAB,‎ ‎∴△AFG∽△AGB;‎ ‎(4)存在,‎ ‎∵EG∥x轴,‎ ‎∴∠GFA=∠BAO=60°,‎ 又G点不能在抛物线的对称轴上,‎ ‎∴∠FGA≠90°,‎ ‎∴当△AGF为直角三角形时,则有∠FAG=90°,‎ 又∠FGA=30°,‎ ‎∴FG=2AF,‎ ‎∵EF=t,EG=4,‎ ‎∴FG=4﹣t,且AF=4﹣2t,‎ ‎∴4﹣t=2(4﹣2t),‎ 解得t=,‎ 即当t的值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=,‎ ‎∴E点坐标为(0,),‎ ‎∵抛物线的顶点为A,‎ ‎∴可设抛物线解析式为y=a(x﹣2)2,‎ 把E点坐标代入可得=4a,解得a=,‎ ‎∴抛物线解析式为y=(x﹣2)2,‎ 即y=x2﹣x+.‎ ‎ ‎