- 444.59 KB
- 2021-11-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
认识一元二次方程
【知识点总结】
一、一元二次方程概念:
一元二次 方程:
只含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程.
一元二次方程的一般形式:
2 0 ( 0)ax bx c a , a 为二次项系数, b 为一次项系数, c 为常数项.
⑴ 要判断一个方程是否是一元二次方程,必须符合以下三个标准:
① 一元二次方程是整式方程,即方程的两边都是关于未知数的整式.
② 一元二次方程是一元方程,即方程中只含有一个未知数.
③ 一元二次方程是 二次方程,也就是方程中未知数的最高次数是 2 .
⑵ 任何一个关于 x 的一元二次方程经过整理都可以化为一般式 2 0a x b x c 0a .
要特别注意对于关于 x 的方程 2 0a x b x c ,[来源:Zxxk.Com]
当 0a 时,方程是一元二次方程;
当 0a 且 0b 时,方程是一元一次方程.
⑶ 关于 x 的一元二次方程式 2 0axbxc 0a 的项与各项的系数.
2ax 为二次项,其系数为 a ; bx 为一次项,其系数为 b ; c 为常数项.
二、判断方程是否为一元二次方程的方法有两种
1、根据定义判定.将方程进行去分母、去括号、移项、合并同类项等变形后,如果能同时满足一元二次方
程定义所包含的三个条件:
① 是整式方程;
②只含有一个未知数;
③未知数的最高次数是 2.那么这个方程就是一元二次方程,否则,这个方程就不是一元二次方程.
2、根据一般形式判定.将方程进行去分母、去括号、移项、合并同类项等变形后,
如果能化为一元二次方程的一般形式 ax2+bx+c=0(a≠0),那么这个方 程就是一元二次方程,否则,这个
方程就不是一元二次方程.
【例题精讲】
1、 下列关于 x 的方程:
2、 ①ax2+bx+c=0;②k2+5k+6=0;③
3
3 x3 一
2
4 x 一
1
2 =0;
④(m2+3)x2+ 3 x-2=0;⑤x2—2x+ 1
x
=0;[来源:Zxxk.Com]
⑥(x+1)( x-1)=x(2x+1); ⑦ 1
2 x(x 一 1)=(2x+1)( 1
4 x-1).
其中一定是关于 x 的一元二次方程的是 .(只填序号)
【解析】本题考查一元二次方程的定义及一般形式.可根据一元二次方程的定义或一般形式来分析关于 x
的方程,即方程中只有 x 是未知数,而其他字母都看成已知数.①不一定是一元二次方程,因为当 a=0 时,
它不是一元二次方程.②没有未知数 x,不是关于 x 的一元二次方程.③中 x 的最高次数为 3,不是一元二
次方程.④中 m2+3>0,所以④为一元二次方程.⑤分母中有未知数,方程不是整式方程,故不是一元二次
方程.⑥化成一般形式为 x2+x+1=0,是一元二次方程.⑦化成一般形式为 5x+4=0,不是一元二次方程.故
填④⑥.
2、关于 x 的一元二次方程(a-1)x2+x+a2-1=0 的一个根是 x=0,则 a 的值为( )
A.1 B.-1 C.1 或-1 D. 1
2
【解析】由方程的根的意义可知,0 使方程左、右两边相等,把 x=0 代入后可求出 a 的值.注意原方程为
关于 x 的一元二次方程,隐含了 a-1≠0 的条件.把 x=0 代入方程,得 a2-1=0,∴a2=1,∴a=±1 .又
∵a-1≠0∴a≠1∴a= -1.故选 B.
【点睛】 本题考查了一元二次方程的根的意义及定义中“a≠0”的条件.[来源 :学科网 ZXXK]
3、求关于 x 的一元二次方程m 2-2 m+m(x2+1)=x 的二次项系数、一次项系数及常数项.
【解析】本题虽然没要求把原方程化为一般形式,但由于二次项系数、一次项系[来源:学#科#网 Z#X#X#K]
数及常数项都是在一般形式下定义的,所以为了求出各项系数,必须先把原方程化为
一般形式.
将方程 m 2-2 m+m(x2+1)=x 化为一般形式,得 m x2-x+m 2-m=0.
因为已知原方程是一元二次方程,所以题中存在隐含条件 m≠0.
此方程的二次项系数为m,一次项系数为-1,常数项为 m2-m.[来源:学+科+网]
4、已知关于 x 的方程(m+ 3 ) 12 mx +2(m 一 1)x -l=0.
(1)m 为何值时,原方程是一元二次方程?
(2)m 为何值时,原方程是一元一次方程?
【解析】此题要根据一元二次方程及一元一次方程的定义确定 m的值.(1)当 m+ 3 ≠0,且 m 2-1=2 时,
此方程为一元二次方程.(2)当 m 分别满足以下几个条件时,此方程都是一元一次方程.①m+ =0,
且 m-1≠0;②m 2-1=1,且 m+ 3 +2(m-1) ≠0;③m 2-l=0,且 2(m-1)≠0.
解:(1)要使(m+ ) 12 mx +2(m- 1)x-1=0 是一元二次方程,[来源:学科网][来源:学.科.网]
则必须满足
2
3 0 .
1 2 .
m
m
-
解得 m= .
所以当 m= 时,原方程是一元二次方程.
(2)若使原方程为一元一次方程,则应分以下几种情况进行讨论:
① 30
10
m
m
解得 m=-
②
2 11
32(1)0
m
mm
解得 m=
③
2 10
2 ( 1 ) 0
m
m
解得 m=-1.
所以当 m=- 或 2 或-l 时,原方程是一元一次方程.[来源:学.科.网 Z.X.X.K]
【点睛】讨论关于 x 的方程是不是一元二次方程或一元一次方程的问题,关键要考虑两点:(1)未知数的
最高次数;(2)最高次项的系数是否为 0.
2