• 677.00 KB
  • 2021-11-12 发布

2019年福建省龙岩市长汀县中考数学一模试卷(含答案解析)

  • 23页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
2019 年福建省龙岩市长汀县中考数学一模试卷 一.选择题(共 10 小题,满分 40 分,每小题 4 分) 1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是(  ) A. B. C. D. 2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值 从 54 万亿元增长 80 万亿元,稳居世界第二,其中 80 万亿用科学记数法表示为(  ) A.8×1012 B.8×1013 C.8×1014 D.0.8×1013 3.下列运算正确的是(  ) A.(﹣a2)3=a6 B.3a2•a=3a2 C.﹣2a+a=﹣a D.6a6÷2a2=3a3 4.如图,在△ABC 中,∠C=90°,EF∥AB,∠1=33°,则∠A 的度数为(  ) A.57° B.47° C.43° D.33° 5.已知一次函数 y=(m﹣1)x 的图象上两点 A(x1,y1),B(x2,y2),当 x1>x2 时,有 y1<y2, 那么 m 的取值范围是(  ) A.m>0 B.m<0 C.m>1 D.m<1 6.如图,在 Rt△ABC 中,CD 是斜边 AB 上的中线,已知 CD=1.5,BC=2,则 cosB 的值是(  ) A. B. C. D. 7.在△ABC 中,∠A,∠B 均为锐角,且有|tanB﹣ |+(2cosA﹣1)2=0,则△ABC 是(  ) A.直角(不等腰)三角形 B.等边三角形 C.等腰(不等边)三角形 D.等腰直角三角形 8.在一个口袋中有 4 个完全相同的小球,把它们分别标号为 1,2,3,4,随机摸出一个小球不放 回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是(  ) A. B. C. D. 9.如图,在▱ABCD 中,AD=16,点 E,F 分别是 BD,CD 的中点,则 EF 等于(  ) A.10 B.8 C.6 D.4 10.如图,D3081 次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进 入隧道的时间 x 与火车在隧道内的长度 y 之间的关系用图象描述大致是(  ) A. B. C. D. 二.填空题(共 6 小题,满分 24 分,每小题 4 分) 11.对于任意不相等的两个数 a,b,定义一种运算※如下:a※b= ,如 3※2= = , 那么 6※3=   . 12.把多项式 3a3b﹣27ab3 分解因式的结果是   . 13.等边△ABO 的边长为 3,在平面直角坐标系中的位置如图所示,则 A 点的坐标是    14.如图,10 块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为 x 厘米和 y 厘米,则列出的方程组为   . 15.如图,一等腰三角形,底边长是 21 厘米,底边上的高是 21 厘米,现在沿底边依次从下往上画 宽度均为 3 厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第   个. 16.如图,正方形 ABCB1 中,AB=1,AB 与直线 l 的夹角为 30°,延长 CB1 交直线 l 于点 A1,作正 方形 A1B1C1B2,延长 C1B2 交直线 l 于点 A2,作正方形 A2B2C2B3,延长 C2B3 交直线 l 于点 A3, 作正方形 A3B3C3B4,…,依此规律,则 A2016A2017=   . 三.解答题(共 9 小题,满分 86 分) 17.解不等式组 ,并把不等式组的解集在数轴上表示出来. 18.已知 m2+3m﹣4=0,求代数式(m+2﹣ )÷ 的值. 19.已知:如图,点 C,D 在线段 AB 上,△PCD 是等边三角形,且 AC=1,CD=2,DB=4.求证 :△ACP∽△PDB.[来源:学科网] 20.如图,在梯形 ABCD 中,AD∥BC,∠C=90°,∠BAD=120°,AB=AD=4,BC=6,以点 A 为圆心在这个梯形内画出一个最大的扇形(图中阴影部分). (1)求这个扇形的面积; (2)若将这个扇形围成圆锥,求这个圆锥的底面积. 21.一商店销售某种商品,平均每天可售出 20 件,每件盈利 40 元.为了扩大销售、增加盈利,该 店采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销售单价每降 低 1 元,平均每天可多售出 2 件.[来源:学#科#网 Z#X#X#K] (1)若降价 3 元,则平均每天销售数量为   件; (2)当每件商品降价多少元时,该商店每天销售利润为 1200 元? 22.“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握 情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按 A,B,C,D 四个等级进 行统计,制成了如下不完整的统计图.(说明:A 级:8 分﹣10 分,B 级:7 分﹣7.9 分,C 级:6 分﹣6.9 分,D 级:1 分﹣5.9 分) 根据所给信息,解答以下问题: (1)在扇形统计图中,C 对应的扇形的圆心角是   度; (2)补全条形统计图; (3)所抽取学生的足球运球测试成绩的中位数会落在   等级; (4)该校九年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多少人? 23.如图,已知⊙O 是△ABC 的外接圆,且 AB=BC=CD,AB∥CD,连接 BD. (1)求证:BD 是⊙O 的切线; (2)若 AB=10,cos∠BAC= ,求 BD 的长及⊙O 的半径. 24.如图,抛物线 y=﹣ x2+bx+c(b 为常数)与 x 轴交于 A、C 两点,与 y 轴交于 B 点,直线 AB 的函数关系式为 y= x+ . (1)求该抛物线的函数关系式与 C 点坐标; (2)已知点 M(m,0)是线段 OA 上的一个动点,过点 M 作 x 轴的垂线 l 分别与直线 AB 和抛 物线交于 D、E 两点,当 m 为何值时,△BDE 恰好是以 DE 为底边的等腰三角形? (3)在(2)问条件下,当△BDE 恰好是以 DE 为底边的等腰三角形时,动点 M 相应位置记为点 M′,将 OM′绕原点 O 顺时针旋转得到 ON(旋转角在 0°到 90°之间); ①探究:线段 OB 上是否存在定点 P(P 不与 O、B 重合),无论 ON 如何旋转, 始终保持不 变,若存在,试求出 P 点坐标;若不存在,请说明理由; ②试求出此旋转过程中,(NA+ NB)的最小值. 25.如图,AB 是⊙O 的直径, = ,连结 AC,过点 C 作直线 l∥AB,点 P 是直线 l 上的一个动 点,直线 PA 与⊙O 交于另一点 D,连结 CD,设直线 PB 与直线 AC 交于点 E. (1)求∠BAC 的度数; (2)当点 D 在 AB 上方,且 CD⊥BP 时,求证:PC=AC; (3)在点 P 的运动过程中 ①当点 A 在线段 PB 的中垂线上或点 B 在线段 PA 的中垂线上时,求出所有满足条件的∠ACD 的 度数; ②设⊙O 的半径为 6,点 E 到直线 l 的距离为 3,连结 BD,DE,直接写出△BDE 的面积. 2019 年福建省龙岩市长汀县中考数学一模试卷 参考答案与试题解析 一.选择题(共 10 小题,满分 40 分,每小题 4 分) 1.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误; B、既是轴对称图形,又是中心对称图形,故本选项正确; C、是轴对称图形,不是中心对称图形,故本选项错误; D、是轴对称图形,不是中心对称图形,故本选项错误.[来源:Zxxk.Com] 故选:B. 【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形 两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合. 2.【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时, 要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对 值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 【解答】解:80 万亿用科学记数法表示为 8×1013. 故选:B. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值. 3.【分析】根据幂的乘方、单项式与单项式的乘除运算法则、合并同类项法则逐一计算可得. 【解答】解:A、(﹣a2)3=﹣a6,此选项错误; B、3a2•a=3a3,此选项错误; C、﹣2a+a=﹣a,此选项正确; D、6a6÷2a2=3a4,此选项错误; 故选:C. 【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、单项式与单项式的乘除运算法 则、合并同类项法则. 4.【分析】先根据平行线的性质求出∠B 的度数,再由直角三角形的性质求出∠A 的度数即可. 【解答】解:∵EF∥AB,∠1=33°, ∴∠B=∠1=33°, ∵△ABC 中,∠C=90°,∠B=33°, ∴∠A=90°﹣∠B=90°﹣33°=57°. 故选:A. 【点评】本题考查的是平行线的性质及直角三角形的性质,用到的知识点为:两直线平行,内错 角相等. 5.【分析】根据一次函数的增减性可求解. 【解答】解:∵一次函数 y=(m﹣1)x 的图象上两点 A(x1,y1),B(x2,y2),且 x1>x2 时, 有 y1<y2 ∴m﹣1<0 ∴m<1 故选:D. 【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数增减性解决问题是本题的关键 . 6.【分析】根据直角三角形的性质求出 AB,根据余弦的定义计算即可. 【解答】解:∵Rt△ABC 中,CD 是斜边 AB 上的中线, ∴AB=2CD=3, 在 Rt△ABC 中,cosB= = , 故选:A. 【点评】本题考查的是解直角三角形、直角三角形的性质,掌握余弦的定义、直角三角形斜边上 的中线是斜边的一半是解题的关键. 7.【分析】直接利用特殊角的三角函数值得出∠B,∠A 的度数,进而得出答案. 【解答】解:∵|tanB﹣ |+(2cosA﹣1)2=0, ∴tanB= ,2cosA=1, 则∠B=60°,∠A=60°, ∴△ABC 是等边三角形. 故选:B. 【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 8.【分析】先画树状图展示所有 12 种等可能的结果数,再找出其中两次摸出的小球的标号的和为 奇数的结果数,然后根据概率公式求解. 【解答】解:画树状图为: 共有 12 种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为 8, 所以两次摸出的小球的标号的和为奇数的概率为 = , 故选:B. 【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果 n,再从 中选出符合事件 A 或 B 的结果数目 m,然后利用概率公式计算事件 A 或事件 B 的概率. 9.【分析】利用三角形的中位线定理即可解决问题; 【解答】解:∵四边形 ABCD 是平行四边形, ∴BC=AD=16, ∵点 E,F 分别是 BD,CD 的中点, ∴EF= BC=8, 故选:B. 【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握基本 知识,属于中考基础题. 10.【分析】先分析题意,把各个时间段内 y 与 x 之间的关系分析清楚,本题是分段函数,分为三 段. 【解答】解:根据题意可知火车进入隧道的时间 x 与火车在隧道内的长度 y 之间的关系具体可描 述为:当火车开始进入时 y 逐渐变大,火车完全进入后一段时间内 y 不变,当火车开始出来时 y 逐 渐变小,故反映到图象上应选 A. 故选:A. 【点评】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题 的关键是要知道本题是分段函数,分情况讨论 y 与 x 之间的函数关系. 二.填空题(共 6 小题,满分 24 分,每小题 4 分) 11.【分析】根据※的运算方法列式算式,再根据算术平方根的定义解答. 【解答】解:6※3= =1. 故答案为:1. 【点评】本题考查了算术平方根的定义,读懂题目信息,理解※的运算方法是解题的关键. 12.【分析】先提出公因式 3ab,再利用平方差公式进行因式分解. 【解答】解:原式=3ab(a2﹣9b2)=3ab(a+3b)(a﹣3b). 故答案是:3ab(a+3b)(a﹣3b). 【点评】本题考查了提公因式法和公式法进行分解因式,解决本题的关键是熟记提公因式法和公 式法. 13.【分析】过 A 作 AE⊥x 轴于 E,根据等边三角形性质求出 OE,根据勾股定理求出 AE,即可得 出答案. 【解答】解:过 A 作 AE⊥x 轴于 E, ∵△ABO 是等边三角形,边长为 3, ∴OA=3,OE=BE=1.5, 在 Rt△AEO 中,由勾股定理得:AE= = =1.5 , 即点 A 的坐标为(﹣1.5,1.5 ), 故答案为:(﹣1.5,1.5 ). 【点评】本题考查了等边三角形的性质和勾股定理,能够正确作出辅助线是解此题的关键. 14.【分析】根据图示可得:长方形的长可以表示为 x+2y,长又是 75 厘米,故 x+2y=75,长方形 的宽可以表示为 2x,或 x+3y,故 2x=3y+x,整理得 x=3y,联立两个方程即可. 【解答】解:根据图示可得 , 故答案是: . 【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方 形的长和宽. 15.【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张. 【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是 3, 所以根据相似三角形的性质可设从顶点到这个正方形的线段为 x, 则 ,解得 x=3, 所以另一段长为 21﹣3=18, 因为 18÷3=6,所以是第 6 个. 故答案为:6 【点评】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形 的性质的综合运用解答. 16.【分析】由四边形ABCB1 是正方形,得到 AB=AB1,AB∥CB1,于是得到 AB∥A1C,根据平行 线的性质得到∠CA1A=30°,解直角三角形得到 A1B1= ,AA1=2,同理:A2A3=2( )2, A3A4=2( )3,找出规律 AnAn+1=2( )n,答案即可求出. 【解答】解:∵四边形 ABCB1 是正方形, ∴AB=AB1,AB∥CB1, ∴AB∥A1C, ∴∠CA1A=30°, ∴A1B1= ,AA1=2, ∴A1B2=A1B1= , ∴A1A2=2 , 同理:A2A3=2( )2, A3A4 =2( )3, … ∴AnAn+1=2( )n, ∴A2016A2017=2( )2016=2×31008. 故答案为:2×31008. 【点评】本题考查了正方形的性质,含30°直角三角形的性质,平行线的性质的综合应用,求出 后一个正方形的边长是前一个正方形的边长的 倍是解题的关键. 三.解答题(共 9 小题,满分 86 分) 17.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、 大大小小无解了确定不等式组的解集. 【解答】解: , 解不等式①,得:x≥﹣1, 解不等式②,得:x<3, 则不等式组的解集为﹣1≤x<3, 将不等式组的解集表示在数轴上如下: 【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取 大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 18.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约 分得到最简结果,把已知等式变形后代入计算即可求出值. 【解答】解:原式= • = • =m(m+3)=m2+3m, ∵m2+3m﹣4=0, ∴m2+3m=4, ∴原式=4. 【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 19.【分析】根据等边三角形的性质得到∠PCD=∠PDC=60°,PC=CD=PD=2,得到∠PCA=∠ PDB=120°,根据已知条件得到 = ,于是得到结论. 【解答】证明:∵△PCD 是等边三角形, ∴∠PCD=∠PDC=60°,PC=CD=PD=2, ∴∠PCA=∠PDB=120°, ∵AC=1,BD=4, ∴ , = , ∴ = , ∴△ACP∽△PDB. 【点评】本题考查了相似三角形的判定,等边三角形的性质,熟练掌握相似三角形的判定定理是 解题的关键. 20.【分析】(1)作 AE⊥BC,根据三角函数求得扇形的半径 AE,由梯形的性质得出圆心角度数, 继而根据扇形的面积公式可得. (2)根据圆锥的底面周长等于扇形的弧长,从而求得底面半径,从而求得面积. 【解答】解:(1)过点 A 作 AE⊥BC 于 E, 则 AE=ABsinB=4× =2 , ∵AD∥BC,∠B=60°, ∴∠BAD=120°, ∴扇形的面积为 =4π, (2)设圆锥的底面半径为 r,则 2πr= , 解得:r= 若 将这个扇形围成圆锥,这个圆锥的底面积 π. 【点评】本题要熟知切线的性质,直角梯形的性质和扇形弧长计算公式.利用切线的性质求得AE 的长即半径是解题的关键,注意扇形的周长为两条半径的长加上弧长. 21.【分析】(1)根据销售单价每降低 1 元,平均每天可多售出 2 件,可得若降价 3 元,则平均每 天可多售出 2×3=6 件,即平均每天销售数量为 20+6=26 件; (2)利用商品平均每天售出的件数×每件盈利=每天销售这种商品利润列出方程解答即可. 【解答】解:(1)若降价 3 元,则平均每天销售数量为 20+2×3=26 件. 故答案为 26; (2)设每件商品应降价 x 元时,该商店每天销售利润为 1200 元. 根据题意,得 (40﹣x)(20+2x)=1200,[来源:学科网 ZXXK] 整理,得 x2﹣30x+200=0, 解得:x1=10,x2=20. ∵要求每件盈利不少于 25 元, ∴x2=20 应舍去, 解得:x=10. 答:每件商品应降价 10 元时,该商店每天销售利润为 1200 元. 【点评】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件 盈利=每天销售的利润是解题关键. 22.【分析】(1)先根据 B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得 C 等 级人数,继而用 360°乘以 C 等级人数所占比例即可得; (2)根据以上所求结果即可补全图形; (3)根据中位数的定义求解可得; (4)总人数乘以样本中 A 等级人数所占比例可得. 【解答】解:(1)∵总人数为 18÷45%=40 人, ∴C 等级人数为 40﹣(4+18+5)=13 人, 则 C 对应的扇形的圆心角是 360°× =117°, 故答案为:117; (2)补全条形图如下: (3)因为共有 40 个数据,其中位数是第 20、21 个数据的平均数,而第 20、21 个数据均落在 B 等级, 所以所抽取学生的足球运球测试成绩的中位数会落在 B 等级, 故答案为:B. (4)估计足球运球测试成绩达到 A 级的学生有 300× =30 人. 【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得 到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接 反映部分占总体的百分比大小. 23.【分析】(1)如图 1,作直径 BE,半径 OC,证明四边形 ABDC 是平行四边形,得∠A=∠D, 由等腰三角形的性质得:∠CBD=∠D=∠A=∠OCE,可得∠EBD=90°,所以 BD 是⊙O 的切 线; (2)如图 2,根据三角函数设 EC=3x,EB=5x,则 BC=4x 根据 AB=BC=10=4x,得 x 的值, 求得⊙O 的半径 为 ,作高线 CG,根据等腰三角形三线合一得 BG=DG,根据三角函数可得结 论. 【解答】(1)证明:如图 1,作直径 BE,交⊙O 于 E,连接 EC、OC, 则∠BCE=90°, ∴∠OCE+∠OCB=90°, ∵AB∥CD,AB=CD, ∴四边形 ABDC 是平行四边形, ∴∠A=∠D, ∵OE=OC, ∴∠E=∠OCE, ∵BC=CD, ∴∠CBD=∠D, ∵∠A=∠E, ∴∠CBD=∠D=∠A=∠OCE, ∵OB=OC, ∴∠OBC=∠OCB, ∴∠OBC+∠CBD=90°, 即∠EBD=90°, ∴BD 是⊙O 的切线; (2)如图 2,∵cos∠BAC=cos∠E= , 设 EC=3x,EB=5x,则 BC=4x, ∵AB=BC=10=4x, x= , ∴EB=5x= , ∴⊙O 的半径为 , 过 C 作 CG⊥BD 于 G, ∵BC=CD=10, ∴BG=DG, Rt△CGD 中,cos∠D=cos∠BAC= , ∴ , ∴DG=6, ∴BD=12. 【点评】本题考查了圆周角定理、三角函数以及切线的判定.要证某线是圆的切线,已知此线过 圆上某点,连接圆心与这点(即为半径),再证垂直即可,在圆的有关计算中,常根据三角函数 的比设未知数,列方程解决问题. 24.【分析】(1)根据已知条件得到 B(0, ),A(﹣6,0),解方程组得到抛物线的函数关 系式为:y=﹣ x2﹣ x+ ,于是得到 C(1,0); (2)由点 M(m,0),过点 M 作 x 轴的垂线 l 分别与直线 AB 和抛物线交于 D、E 两点,得到 D (m, m+ ),当 DE 为底时,作 BG⊥DE 于 G,根据等腰三角形的性质得到 EG=GD= ED ,GM=OB= ,列方程即可得到结论; (3)①根据已知条件得到 ON=OM′=4,OB= ,由∠NOP=∠BON,特殊的当△NOP∽△ BON 时,根据相似三角形的性质得到 = = = ,于是得到结论; ②根据题意得到 N 在以 O 为圆心,4 为半径的半圆上,由①知, = = ,得到 NP= NB ,于是得到(NA+ NB)的最小值=NA+NP,此时 N,A,P 三点共线,根据勾股定理得到结论. 【解答】解:(1)在 y= x+ 中,令 x=0,则 y= ,令 y=0,则 x=﹣6, ∴B(0, ),A(﹣6,0), 把 B(0, ),A(﹣6,0)代入 y=﹣ x2+bx+c 得, , ∴ , ∴抛物线的函数关系式为:y=﹣ x2﹣ x+ , 令 y=0,则 0=﹣ x2﹣ x+ , ∴x1=﹣6,x2=1, ∴C(1,0); (2)∵点 M(m,0),过点 M 作 x 轴的垂线 l 分别与直线 AB 和抛物线交于 D、E 两点, ∴D(m, m+ ),当 DE 为底时, 如图 1,作 BG⊥DE 于 G,则 EG=GD= ED,GM=OB= , ∵DM+DG=GM=OB, ∴ m+ + (﹣ m2﹣ m+ ﹣ m﹣ )= , 解得:m1=﹣4,m2=0(不合题意,舍去), ∴当 m=﹣4 时,△BDE 恰好是以 DE 为底边的等腰三角形; (3)①存在,如图 2. ∵ON=OM′=4,OB= , ∵∠NOP=∠BON, ∴当△NOP∽△BON 时, = = = , ∴ 不变, 即 OP= ON= ×4=3, ∴P(0,3); ②∵N 在以 O 为圆心,4 为半径的半圆上,由①知, = = , ∴NP= NB, ∴(NA+ NB)的最小值=NA+NP, ∴此时 N,A,P 三点共线, ∴(NA+ NB)的最小值= =3 . 【点评】本题是二次函数综合题,其中涉及到待定系数法求抛物线的解析式,函数图象上点的坐 标特征,等腰三角形的性质,相似三角形的性质,勾股定理等知识,正确作出辅助线是解题的关 键. 25.【分析】(1)只要证明△ABC 是等腰直角三角形即可; (2)只要证明 CB=CP,CB=CA 即可;、 (3)①分四种情形分别画出图形一一求解即可; ②分两种情形如图 6 中,作 EK⊥PC 于 K.只要证明四边形 ADBC 是正方形即可解决问题;如图 7 中,连接 OC,作 BG⊥CP 于 G,EK⊥PC 于 K.由△AOQ∽△ADB,可得 S△ABD= ,可得 S△PBD=S△ABP﹣S△ABD= ,再根据 S△BDE= •S△PBD 计算即可解决问题; 【解答】解:(1)如图 1 中,连接 BC. ∵ = , ∴BC=CA, ∵AB 是直径, ∴∠ACB=90°, ∴∠BAC=∠CBA=45°. (2)解:如图 1 中,设 PB 交 CD 于 K. ∵ = , ∴∠CDB=∠CDP=45°,CB=CA, ∴CD 平分∠BDP,又∵CD⊥BP, ∴∠DKB=∠DKP=90°,∵DK=DK, ∴△DKB≌△DKP, ∴BK=KP, 即 CD 是 PB 的中垂线, ∴CP=CB=CA. (3)①(Ⅰ)如图 2,当 B 在 PA 的中垂线上,且 P 在右时,∠ACD=15°; 理由:连接 BD、OC.作 BG⊥PC 于 G.则四边形 OBGC 是正方形, ∵BG=OC=OB=CG, ∵BA=BA, ∴PB=2BG, ∴∠BPG=30°, ∵AB∥PC, ∴∠ABP=30°, ∵BD 垂直平分 AP, ∴∠ABD= ∠ABP=15°, ∴∠ACD=15° (Ⅱ)如图 3,当 B 在 PA 的中垂线上,且 P 在左,∠ACD=105°; 理由:作 BG⊥CP 于 G. 同法可证∠BPG=30°,可得∠APB=∠BAP=∠APC=15°, ∴∠ABD=75°, ∵∠ACD+∠ABD=180°, ∴∠ACD=105°; (Ⅲ)如图 4,A 在 PB 的中垂线上,且 P 在右时∠ACD=60°; 理由:作 AH⊥PC 于 H,连接 BC. 同法可证∠APH=30°,可得∠DAC=75°,∠D=∠ABC=45°, ∴∠ACD=60°; (Ⅳ)如图 5,A 在 PB 的中垂线上,且 P 在左时∠ACD=120° 理由:作 AH⊥PC 于 H. 同法可证:∠APH=30°,可得∠ADC=45°,∠DAC=60°﹣45°=15°, ∴∠ACD=120°. ②如图 6 中,作 EK⊥PC 于 K. ∵EK=CK=3,[来源:学。科。网] ∴EC=3 , ∵AC=6 , ∴AE=EC, ∵AB∥PC, ∴∠BAE=∠PCE,∵∠AEB=∠PEC, ∴△ABE≌△CPE, ∴PC=AB=CD, ∴△PCD 是等腰直角三角形,可得四边形 ADBC 是正方形, ∴S△BDE= •S 正方形 ADBC=36. 如图 7 中,连接 OC,作 BG⊥CP 于 G,EK⊥PC 于 K. 由题意 CK=EK=3,PK=1,PG=2, 由△AOQ∽△PCQ,可得 QC= , PQ2= , 由△AOQ∽△ADB,可得 S△ABD= , ∴S△PBD=S△ABP﹣S△ABD= , ∴S△BDE= •S△PBD= 综上所,满足条件的△BDE 的面积为 36 或 . 【点评】本题考查圆综合题、等腰直角三角形的性质和判定、相似三角形的判定和性质、切线的 性质、线段的垂直平分线的性质和判定、直角三角形中 30 度角的判定等知识,解题的关键是学 会用分类讨论的思想思考问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴 题.