• 302.40 KB
  • 2021-11-12 发布

2018年湖南省常德市中考数学试卷含答案

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年湖南省常德市中考数学试卷 ‎ ‎ 一、选择题(本大题8个小题,每小题3分,满分24分)‎ ‎1.(3分)﹣2的相反数是(  )‎ A.2 B.﹣2 C.2﹣1 D.﹣‎ ‎2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是(  )‎ A.1 B.2 C.8 D.11‎ ‎3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是(  )‎ A.a>b B.|a|<|b| C.ab>0 D.﹣a>b ‎4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则(  )‎ A.k<2 B.k>2 C.k>0 D.k<0‎ ‎5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适(  )‎ A.甲 B.乙 C.丙 D.丁 ‎6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为(  )‎ A.6 B.5 C.4 D.3‎ ‎7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为(  )‎ 20‎ A. B. C. D.‎ ‎8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,Dx=,Dy=.‎ 问题:对于用上面的方法解二元一次方程组时,下面说法错误的是(  )‎ A.D==﹣7 B.Dx=﹣14‎ C.Dy=27 D.方程组的解为 ‎ ‎ 二、填空题(本大题8个小题,每小题3分,满分24分)‎ ‎9.(3分)﹣8的立方根是   .‎ ‎10.(3分)分式方程﹣=0的解为x=   .‎ ‎11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为   千米.‎ ‎12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是   .‎ ‎13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是   (只写一个).‎ 20‎ ‎14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为   .‎ 视力x 频数 ‎4.0≤x<4.3‎ ‎20‎ ‎4.3≤x<4.6‎ ‎40‎ ‎4.6≤x<4.9‎ ‎70‎ ‎4.9≤x≤5.2‎ ‎60‎ ‎5.2≤x<5.5‎ ‎10‎ ‎15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB=   .‎ ‎16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是   .‎ ‎ ‎ 三、(本大题2个小题,每小题5分,满分10分)‎ ‎17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.‎ ‎18.(5分)求不等式组的正整数解.‎ ‎ ‎ 20‎ 四、(本大题2个小题,每小题6分,满分12分)‎ ‎19.(6分)先化简,再求值:(+)÷,其中x=.‎ ‎20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.‎ ‎(1)求一次函数与反比例函数的解析式;‎ ‎(2)请根据图象直接写出y1<y2时x的取值范围.‎ ‎ ‎ 五、(本大题2个小题,每小题7分,满分14分)‎ ‎21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.‎ ‎(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?‎ ‎(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?‎ ‎22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)‎ 20‎ ‎ ‎ 六、(本大题2个小题,每小题8分,满分16分)‎ ‎23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:‎ ‎(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);‎ ‎(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?‎ ‎(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?‎ ‎(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.‎ ‎24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.‎ ‎(1)求证:EA是⊙O的切线;‎ ‎(2)求证:BD=CF.‎ 20‎ ‎ ‎ 七、(本大题2个小题,每小题10分,满分20分)‎ ‎25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.‎ ‎(1)求该二次函数的解析式;‎ ‎(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;‎ ‎(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.‎ ‎26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.‎ 20‎ ‎(1)如图1,当M在线段BO上时,求证:MO=NO;‎ ‎(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;‎ ‎(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.‎ ‎ ‎ 20‎ ‎2018年湖南省常德市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题8个小题,每小题3分,满分24分)‎ ‎1.‎ ‎【解答】解:﹣2的相反数是:2.‎ 故选:A.‎ ‎ ‎ ‎2.‎ ‎【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,‎ ‎4<x<10,‎ 故选:C.‎ ‎ ‎ ‎3.‎ ‎【解答】解:由数轴可得,‎ ‎﹣2<a<﹣1<0<b<1,‎ ‎∴a<b,故选项A错误,‎ ‎|a|>|b|,故选项B错误,‎ ab<0,故选项C错误,‎ ‎﹣a>b,故选项D正确,‎ 故选:D.‎ ‎ ‎ ‎4.‎ ‎【解答】解:由题意,得 k﹣2>0,‎ 解得k>2,‎ 20‎ 故选:B.‎ ‎ ‎ ‎5.‎ ‎【解答】解:∵1.5<2.6<3.5<3.68,‎ ‎∴甲的成绩最稳定,‎ ‎∴派甲去参赛更好,‎ 故选:A.‎ ‎ ‎ ‎6.‎ ‎【解答】解:∵ED是BC的垂直平分线,‎ ‎∴DB=DC,‎ ‎∴∠C=∠DBC,‎ ‎∵BD是△ABC的角平分线,‎ ‎∴∠ABD=∠DBC,‎ ‎∴∠C=∠DBC=∠ABD=30°,‎ ‎∴BD=2AD=6,‎ ‎∴CE=CD×cos∠C=3,‎ 故选:D.‎ ‎ ‎ ‎7.‎ ‎【解答】解:从正面看是一个等腰三角形,高线是虚线,‎ 故选:D.‎ ‎ ‎ ‎8.‎ ‎【解答】解:A、D==﹣7,正确;‎ B、Dx==﹣2﹣1×12=﹣14,正确;‎ C、Dy==2×12﹣1×3=21,不正确;‎ D、方程组的解:x===2,y===﹣3,正确;‎ 20‎ 故选:C.‎ ‎ ‎ 二、填空题(本大题8个小题,每小题3分,满分24分)‎ ‎9.‎ ‎【解答】解:∵(﹣2)3=﹣8,‎ ‎∴﹣8的立方根是﹣2.‎ 故答案为:﹣2.‎ ‎ ‎ ‎10.‎ ‎【解答】解:去分母得:x+2﹣3x=0,‎ 解得:x=1,‎ 经检验x=1是分式方程的解.‎ 故答案为:1‎ ‎ ‎ ‎11.‎ ‎【解答】解:1 5000 0000=1.5×108,‎ 故答案为:1.5×108.‎ ‎ ‎ ‎12.‎ ‎【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,‎ 所以这组数据的中位数为1,‎ 故答案为:1.‎ ‎ ‎ ‎13.‎ ‎【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,‎ ‎∴△=b2﹣4×2×3>0,‎ 解得:b<﹣2或b>2.‎ 20‎ 故答案可以为:6.‎ ‎ ‎ ‎14.‎ ‎【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,‎ 则视力在4.9≤x<5.5这个范围的频率为:=0.35.‎ 故答案为:0.35.‎ ‎ ‎ ‎15.‎ ‎【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,‎ ‎∴∠EBG=∠EGB.‎ ‎∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.‎ 又∵AD∥BC,‎ ‎∴∠AGB=∠GBC.‎ ‎∴∠AGB=∠BGH.‎ ‎∵∠DGH=30°,‎ ‎∴∠AGH=150°,‎ ‎∴∠AGB=∠AGH=75°,‎ 故答案为:75°.‎ ‎ ‎ ‎16.‎ ‎【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,‎ 所以有x﹣12+x=2×3,‎ 解得x=9.‎ 故答案为9.‎ ‎ ‎ 三、(本大题2个小题,每小题5分,满分10分)‎ 20‎ ‎17.‎ ‎【解答】解:原式=1﹣(2﹣1)+2﹣4,‎ ‎=1﹣2+1+2﹣4,‎ ‎=﹣2.‎ ‎ ‎ ‎18.‎ ‎【解答】解:,‎ 解不等式①,得x>﹣2,‎ 解不等式②,得x≤,‎ 不等式组的解集是﹣2<x≤,‎ 不等式组的正整数解是1,2,3,4.‎ ‎ ‎ 四、(本大题2个小题,每小题6分,满分12分)‎ ‎19.‎ ‎【解答】解:原式=[+]×(x﹣3)2‎ ‎=×(x﹣3)2‎ ‎=x﹣3,‎ 把x=代入得:原式=﹣3=﹣.‎ ‎ ‎ ‎20.‎ ‎【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),‎ ‎∴k2=4×1=4,‎ ‎∴反比例函数的解析式为y2=.‎ ‎∵点B(n,﹣2)在反比例函数y2=的图象上,‎ 20‎ ‎∴n=4÷(﹣2)=﹣2,‎ ‎∴点B的坐标为(﹣2,﹣2).‎ 将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,‎ ‎,解得:,‎ ‎∴一次函数的解析式为y=x﹣1.‎ ‎(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,‎ ‎∴y1<y2时x的取值范围为x<﹣2或0<x<4.‎ ‎ ‎ 五、(本大题2个小题,每小题7分,满分14分)‎ ‎21.‎ ‎【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,‎ 根据题意得:,‎ 解得:.‎ 答:该店5月份购进甲种水果190千克,购进乙种水果10千克.‎ ‎(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,‎ 根据题意得:w=10a+20(120﹣a)=﹣10a+2400.‎ ‎∵甲种水果不超过乙种水果的3倍,‎ ‎∴a≤3(120﹣a),‎ 解得:a≤90.‎ ‎∵k=﹣10<0,‎ ‎∴w随a值的增大而减小,‎ ‎∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.‎ 20‎ ‎∴月份该店需要支付这两种水果的货款最少应是1500元.‎ ‎ ‎ ‎22.‎ ‎【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.‎ ‎∵AB=CD,AB+CD=AD=2,‎ ‎∴AB=CD=1.‎ 在Rt△ABE中,AB=1,∠A=37°,‎ ‎∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.‎ 在Rt△CDF中,CD=1,∠D=45°,‎ ‎∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.‎ ‎∵BE⊥AD,CF⊥AD,‎ ‎∴BE∥CM,‎ 又∵BE=CM,‎ ‎∴四边形BEMC为平行四边形,‎ ‎∴BC=EM,CM=BE.‎ 在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,‎ ‎∴EM=≈1.4,‎ ‎∴B与C之间的距离约为1.4米.‎ ‎ ‎ 六、(本大题2个小题,每小题8分,满分16分)‎ ‎23.‎ ‎【解答】解:(1)调查的总人数为8÷16%=50(人),‎ 喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),‎ 20‎ 所以喜欢乒乓球的学生所占的百分比=×100%=28%,‎ 补全条形统计图如下:‎ ‎(2)500×12%=60,‎ 所以估计全校500名学生中最喜欢“排球”项目的有60名;‎ ‎(3),篮球”部分所对应的圆心角=360×40%=144°;‎ ‎(4)画树状图为:‎ 共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,‎ 所以抽取的两人恰好是甲和乙的概率==.‎ ‎ ‎ ‎24.‎ ‎【解答】证明:(1)连接OD,‎ ‎∵⊙O是等边三角形ABC的外接圆,‎ ‎∴∠OAC=30°,∠BCA=60°,‎ ‎∵AE∥BC,‎ ‎∴∠EAC=∠BCA=60°,‎ ‎∴∠OAE=∠OAC+∠EAC=30°+60°=90°,‎ ‎∴AE是⊙O的切线;‎ ‎(2)∵△ABC是等边三角形,‎ ‎∴AB=AC,∠BAC=∠ABC=60°,‎ ‎∵A、B、C、D四点共圆,‎ ‎∴∠ADF=∠ABC=60°,‎ 20‎ ‎∵AD=DF,‎ ‎∴△ADF是等边三角形,‎ ‎∴AD=AF,∠DAF=60°,‎ ‎∴∠BAC+∠CAD=∠DAF+∠CAD,‎ 即∠BAF=∠CAF,‎ 在△BAD和△CAF中,‎ ‎∵,‎ ‎∴△BAD≌△CAF,‎ ‎∴BD=CF.‎ ‎ ‎ 七、(本大题2个小题,每小题10分,满分20分)‎ ‎25.‎ ‎【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,‎ ‎∴B点坐标为(6,0),‎ 设抛物线解析式为y=ax(x﹣6),‎ 把A(8,4)代入得a•8•2=4,解得a=,‎ ‎∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;‎ ‎(2)设M(t,0),‎ 易得直线OA的解析式为y=x,‎ 设直线AB的解析式为y=kx+b,‎ 把B(6,0),A(8,4)代入得,解得,‎ ‎∴直线AB的解析式为y=2x﹣12,‎ ‎∵MN∥AB,‎ ‎∴设直线MN的解析式为y=2x+n,‎ 把M(t,0)代入得2t+n=0,解得n=﹣2t,‎ ‎∴直线MN的解析式为y=2x﹣2t,‎ 20‎ 解方程组得,则N(t,t),‎ ‎∴S△AMN=S△AOM﹣S△NOM ‎=•4•t﹣•t•t ‎=﹣t2+2t ‎=﹣(t﹣3)2+3,‎ 当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);‎ ‎(3)设Q(m,m2﹣m),‎ ‎∵∠OPQ=∠ACO,‎ ‎∴当=时,△PQO∽△COA,即=,‎ ‎∴PQ=2PO,即|m2﹣m|=2|m|,‎ 解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);‎ 解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);‎ ‎∴当=时,△PQO∽△CAO,即=,‎ ‎∴PQ=PO,即|m2﹣m|=|m|,‎ 解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),‎ 解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);‎ 综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).‎ ‎ ‎ ‎26.‎ ‎【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,‎ ‎∴OD=OA,∠AOM=∠DON=90°,‎ ‎∴∠OND+∠ODN=90°,‎ ‎∵∠ANH=∠OND,‎ 20‎ ‎∴∠ANH+∠ODN=90°,‎ ‎∵DH⊥AE,‎ ‎∴∠DHM=90°,‎ ‎∴∠ANH+∠OAM=90°,‎ ‎∴∠ODN=∠OAM,‎ ‎∴△DON≌△AOM,‎ ‎∴OM=ON;‎ ‎(2)连接MN,‎ ‎∵EN∥BD,‎ ‎∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,‎ ‎∴EN=CN,同(1)的方法得,OM=ON,‎ ‎∵OD=OD,‎ ‎∴DM=CN=EN,‎ ‎∵EN∥DM,‎ ‎∴四边形DENM是平行四边形,‎ ‎∵DN⊥AE,‎ ‎∴▱DENM是菱形,‎ ‎∴DE=EN,‎ ‎∴∠EDN=∠END,‎ ‎∵EN∥BD,‎ ‎∴∠END=∠BDN,‎ ‎∴∠EDN=∠BDN,‎ ‎∵∠BDC=45°,‎ ‎∴∠BDN=22.5°,‎ ‎∵∠AHD=90°,‎ ‎∴∠AMB=∠DME=90°﹣∠BDN=67.5°,‎ ‎∵∠ABM=45°,‎ ‎∴∠BAM=67.5°=∠AMB,‎ 20‎ ‎∴BM=AB;‎ ‎(3)设CE=a(a>0)‎ ‎∵EN⊥CD,‎ ‎∴∠CEN=90°,‎ ‎∵∠ACD=45°,‎ ‎∴∠CNE=45°=∠ACD,‎ ‎∴EN=CE=a,‎ ‎∴CN=a,‎ 设DE=b(b>0),‎ ‎∴AD=CD=DE+CE=a+b,‎ 根据勾股定理得,AC=AD=(a+b),‎ 同(1)的方法得,∠OAM=∠ODN,‎ ‎∵∠OAD=∠ODC=45°,‎ ‎∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,‎ ‎∴△DEN∽△ADE,‎ ‎∴,‎ ‎∴,‎ ‎∴a=b(已舍去不符合题意的)‎ ‎∴CN=a=b,AC=(a+b)=b,‎ ‎∴AN=AC﹣CN=b,‎ ‎∴AN2=2b2,AC•CN=b•b=2b2‎ ‎∴AN2=AC•CN.‎ 20‎ ‎ ‎ 20‎