• 9.48 MB
  • 2022-02-10 发布

小学数学人教版五年级下册期末总复习课件2

  • 159页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第一单元 观察物体(三) 观察角度:上、左、右、正等 景象不同 物体形状 : 观察角度 上、左、右、正面等 观察物体 一个长方体有( )个面,一次最多可以看见( )个面。 6 3 2 颗 的是( )面; 1 颗 的是( )面; 3 颗 的是( )面; 正 右 上 连一连 正面 左面 上面 看一看,画一画 从正面看: ____ 从左面看: ____ 从上面看: ____ 从右面看: ____ 下面这些图分别是从哪个方向上看到的? 左面 上面 正面 右面 √ ○ △ √ ○ △ √ ○ △ A 、 B 、 C 、 5. 从右面观察 所看到的图形是( )。 A 、 B 、 C 、 A B 第二单元 因数与倍数 小狗吃骨头 _______ 既是 18 的因数,又是 21 的因数 9 18 4 2 7 6 3 1 21 18 的因数 21 的因数 把 36 个球装在盒子里,每个盒子装得同样多,需要几个盒子?有几种装法?如果有 37 个球呢? 一个数 只有 1 和它本身 两个 因数,这个数叫作 质数 (也叫作素数)。 一个数,如果 除了 1 和它本身以外, 还有 别的因数,这个数叫作 合数 。 1 既不是 质数, 也不是 合数。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 试着找出 100 内的所有质数! 方法: 1, 划去 1 ; 2, 划去除 2 外所有 2 的 倍数; 3, 划掉除 3,5,7 外所有 3, 5,7 的倍数 , 剩下的就 是质数。 除尽 整除 2 、 5 、 3 倍数的特征 自然数 1 质数 合数 质因数 分解质因数 倍数 公倍数 最小公倍数 因数 最大公因数 公因数 因数与倍数 偶数 奇数 易混概念对比 1. 如果甲数是乙数的 5 倍,那么,甲数一定 是乙数的倍数。( ) 倍的概念比倍数要广,倍可以适用于小数、 分数和整数,而倍数只适用于整数。 例如: 16 是 8 的 2 倍,也可以说 16 是 8 的倍数。 1.6 是 0.8 的 2 倍,但是不能说 1.6 是 0.8 的倍数。 2. 对比几个字面类似的概念:质数、质因数、互质数、分解质因数,使学生清楚它们的含义,并能举例说明。 质数 一个数,如果只有 1 和它本身两个因数,这样的数叫做质数(或素数)。 质因数 每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。 分解质因数 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 互质数 公因数只有 1 的两个数,叫做互质数。 易混概念对比 易混概念对比 质数 是一个具体的数,它是相对于一个数的因数的个数而言的 。 质因数 也是一个具体的数,必须是一个质数它是一个合数的因数。 分解质因数 是把一个一个合数分解成几个质数相乘形式的过程。 互质数特殊的判断方法 ① 1 和任意自然数互质。 ②2 和任意奇数都是互质数。 ③ 相邻两个自然数都是互质数。 ④ 相邻的两个奇数都是互质数。 ⑤ 不相同的两个质数是互质数。 ⑥ 当一个数是合数,而另一个数是质数时,若合数不是质数的倍数,一般情况下这两个数也是互质数。 对比中沟通概念间的联系 1. 如:把 1——20 的数字填入下表中: 质 数 合 数 非质非合 奇数 3 、 5 、 7 、 11 、 13 、 17 、 19 9 、 15 1 偶数 2 4 、 6 、 8 、 10 、 12 、 14 、 16 、 18 、 20 2. 出示判断题: ( 1 )自然数中,除了奇数就是偶数。( ) ( 2 )所有的奇数都是质数。 ( ) ( 3 )所有的合数都是偶数。 ( ) ( 4 )自然数中,除了质数就是合数。( ) ( 5 )质数与质数的积还是质数。 ( ) ( 6 )一个数越大,它的因数的个数就越多。 ( ) 注意:奇数里既有质数也有合数还有 1 。 质数里除了 2 以外都是奇数。 偶数里除了 2 以外全是合数。 3. 奇数和偶数的运算性质 奇数 ± 奇数 = 偶数 偶数 ± 偶数 = 偶数 奇数 ± 偶数 = 奇数 奇数 × 奇数 = 奇数 偶数 × 偶数 = 偶数 奇数 × 偶数 = 偶数 4. 同时是 2 和 5 的倍数的特征 个位上是 0 的数都是 2 和 5 的倍数。 同时是 2 和 3 的倍数的特征 个位上是 0 、 2 、 4 、 6 、 8 ,并且各数位上的数字之和是 3 的倍数,这个数就是 2 和 3 的倍数。 同时是 3 和 5 的倍数的特征 个位上是 0 或 5 ,且各数位上的数字之和是 3 的倍数,这个数就是 3 和 5 的倍数。 同时是 2 、 3 、 5 的倍数的特征 个位上是 0 ,且各数位上的数字之和是 3 的倍数,这个数就同时是 2 、 3 、 5 的倍数。 5. 【 2 、 5 、 3 的倍数的特征 】 按要求填一填。 30 10 42 65 3 18 15 45 5 46 27 72 55 2 120 102 2 的倍数 2 和 3 的公倍数 5 的倍数 3 的倍数 2 和 5 的公倍数 3 和 5 的公倍数 2 、 3 、 5 的公倍数 同时是 2 、 3 倍数的最小数是()。 同时是 2 、 5 倍数的最大两位数()。 同时是 3 、 5 倍数的最大两位奇数()。 同时是 2 、 3 和 5 倍数的最小三位数()。 求两个数最大公因数的方法: 列举法: 先分别找出两个数的因数,从中找出公因数,再找出最大的一个。 先找出两个数中较小数的因数,从中圈出另一个数的因数,再看哪一个最大? 分解质因数法: 现将这两个数分别分解质因数,再从分解的质因数中找出公有的质因数,公有的质因数连乘所得的积就是这两个数的最大公因数。 用集合图法。 最大公因数 最小公倍数 所以,( 18 , 30 ) =2×3=6 (公有质因数的积) [18 , 30]= 2×3×3×5=90 (公有质因数与独有质因数的积) 为了便于区分,可以简单归纳为:最大公因数乘半边,最小公倍数乘半圈。 18 30 2 9 15 3 3 5 公有的质因数 独有的质因数 特殊情况 熟练掌握两种特殊情况。 两数关系 最大公因数 最小公倍数 互质关系 1 两数积 倍数关系 较小数 较大数 同时熟记 7 、 11 、 13 、 17 、 19 等数的倍数 及 11—20 所有数的平方数以提高计算速度。 如求 12 和 30 的最小公倍数就可以采用大数扩倍法,把 30 扩大 2 倍为 60 , 60 是 12 的 5 倍,所以 60 是他们的最小公倍数。 重视口算技巧 18 30 6 3 5 求两个数的最大公因数与最小公倍数时,用合数作除数有助于提高计算速度。 解决问题 小船最初在南岸,从南岸驶向北岸,再从北岸返回南岸,不断往返。 ( 1 )小船摆渡 11 次后,船在南岸还是北岸?为什么? ( 2 )有人说摆渡 100 次后,小船在北岸,他的说法对吗?为什么? 分析: 在两点间行走,走 奇数次后 到与起点 相对处 ,走 偶数次后 回到 起点处 。 北京站是 104 路和 103 路电车的起发站。 104 路每 3 分发一次车, 103 路每 8 分发一次车,这两路电车同时发车以后,至少再过多少分又同时发车? 分析: 104 路电车每 3 分发一次车,每次发车时间一定是 3 的倍数,即第二次发车与第一次发车间隔 3 分,第三次发车与第一次发车间隔 6 分,而 103 路电车每 8 分发一次车,每次发车的时间一定是 8 的倍数,即第二次发车与第一次发车间隔 8 分,第三次发车与第一次发车间隔 16 分,这样就找到了每次两路电车同时发车的时间,就是求 3 和 8 的最小公倍数。 小红家的客厅长 48 分米,宽 32 分米。现在给客厅的地面铺正方形地砖,有三种砖,你帮小红家想一想,选择哪种地砖能铺得即整齐又不会有余料? 边长 3 分米 边长 6 分米 边长 8 分米 分析: 求出 48 和 32 的公因数,这个公因数是地砖的边长。 复习长方体和正方体 第一课时 长方形 正方形 三角形 按边分 按角分 等边三角形 等腰三角形 一般三角形 锐角三角形 直角角三角形 钝角三角形 平行四边形 梯形 等腰梯形 直角梯形 一般梯形 组合图形 平面图形 一、建构知识网络 立体图形 正方体 长方体 二、 注重知识的承接,回顾所学平面图形的特征、周长和面积公式。 名称 特征 周长( c ) 面积( s ) 长方形 两组对边分别平行且相等 (长+宽) ×2 C=2(a + b) 长 × 宽 S=ab 正方形 四边相等 边长 ×4 C=4a 边长 × 边长 S=a ² 平行四边形 两组对边平行且相等 底 × 高 S=ah 梯形 只有一组对边平行 (上底+下底) × 高 ÷2 三角形 三条边,三个内角的和等于 18 0° (底 × 高) ÷2 ah S= 1 2 (a+b)h S= 1 2 三、 明确长方体、正方体的异同。 从点、棱、面三方面比较长方体和正方体之间的相同点和不同点 长方体 正方体 相同点 6 个面、 12 条棱、 8 个顶点 不同点 6 个面都是长方形(有时相对的两个面是正方形),相对面完全相同。 6 个面都是正方形, 6 个面完全相同 相对棱的长度相等 12 条棱长度都相等 正方体是特殊的长方体。 用集合图表示: 长方体 正方体 四、 复习长方体、正方体表面积的含义 15 10 8 后 前 上 下 左 右 ● 15 10 8 单位:厘米 长方体六个面的面积,就是长方体的表面积。 1. 长方体表面积的含义 2 .正方体表面积的含义 ( 1 )正方体棱长与每个面边长的关系 后 上 前 下 左 右 正方体展开图的每个面都是正方形,边长就是正方体的棱长,每个面的面积都等于棱长乘棱长。 ( 2 )正方体的 11 种展开图。 图( 1 ) 图( 2 ) 图( 3 ) 图( 4 ) 图( 5 ) 图( 6 ) 第一类:中间四连方,两侧各有一个,共 6 种 第二类:中间三连方,一侧有一个、一侧有二个,共 3 种 图( 7 ) 图( 8 ) 图( 9 ) 第三类:中间两连方,两侧各有 2 个,只有 1 种 图( 10 ) 第四类:两排各有 3 个,只有 1 种 图( 11 ) 长方体 正方体 12 7 5 5 5 5 一间教室长 10 米 , 宽 6 米 , 高 4 米 , 现要粉刷屋顶和四壁 , 除去门窗 面积 20 平方米 , 如果每平方米需 工料费 1.5 元 , 粉刷这间教室共需 工料费多少元 ? 五、复习长方体、正方体体积公式的推导 长方体的体积 = 长 × 宽 × 高 底面积 正方体的体积 = 棱长 × 棱长 × 棱长 底面积 可看作是高 长方体(或正方体)的 体积 = 底面积 × 高 六、体积与容积区别与联系 异同点 体积 容积 区别 意义不同 物体所占空间的大小,叫做物体的体积。 一个容器所能容纳物体的体积,叫做这个容器的容积。 测量方法不同 从物体外部测量长、宽、高。 从容器里面测量长、宽、高。 单位名称不同 m³ 、 dm³ 、 cm³ 。 容积单位: L 和 ml; 计量固体时用体积单位。 联系 容积的大小是通过所能容纳物体的体积表示出来的。 计算方法相同 7 厘米 5 厘米 5 厘米 这个长方体的长是( 7 )厘米,宽是( 5 )厘米,高是( 5 )厘米,这个长方体有( 2 )个面是正方形,有( 4 )个面是长方形。 如图 1 . 2. 要焊接一个长 10cm ,宽 8cm ,高 6cm 的长方体框架,要准备 10cm ,宽 8cm ,高 6cm 的铁丝各( 4 )根。 3 .一个正方体纸盒的棱长是 7cm ,这个纸盒的棱长总和是( 84 ) cm 。 4 .有一根 150cm 长的铁丝,用这根铁丝焊成了一个正方体的框架,还剩铁丝 6cm 。这个正方体框架的棱长是( )厘米。 七、基础知识的练习 150cm 12 8. 有一个长方体,底面是一个正方形,高 18cm ,侧面展开正好是一个正方形。这个长方体的体积是( 364.5 ) cm³ 。 18÷4=4.5 ( cm ) 4.5×4.5×18 =20.25×18 =364.5 ( cm³ ) 18cm 18cm 18cm 10. 把棱长是 1 厘米的小正方体拼摆在一起。如果从右面看,所看到的图形面积是 ( 7 ) 平方厘米,体积是( 11 )立方厘米。 11. 一个棱长为 2cm 的正方体,在它的一个角上挖掉一个棱长为 1cm 的小正方体,它的表面积是 (     24 ) cm² 。 第二课时:解决相关的实际问题 12cm 15cm 8cm 1. 一条彩带捆扎一种礼盒(如图),如果接头处的彩带长 30cm ,求这条彩带的长度。 8×4 + 12×2 + 15×2 + 30=116 ( cm ) 答:这条彩带长 116 厘米。 2. 与右面正方体一致的展开图是( )。 B 1 2 3 1 2 3 2 3 1 1 2 3 C B A 甲 乙 取出石块后 2.1dm 1.8dm 3. 图中有两个完全一样的长方体水箱,水箱的底面积是 2 平方分米,请结合图中所给信息求出甲箱中石块的体积是多少? 2×(2.1-1.8)=0.6 ( dm ³ ) 答:石块的体积是 0.6dm ³ 。 前 右 6 3 7 4 .小明从一个长方体纸盒上撕下两个相邻的面(展开后如图,单位:厘米),这个纸盒的底面积是( )平方厘米,体积是( )立方厘米。 底面积: 6×3=18 (平方厘米) 18 126 体积: 6×3×7=126 (立方厘米) 5 厘米 5 厘米 5 厘米 5. 把 积木装入纸箱内,纸箱从里面量,长 25 厘米,宽和高都是 20 厘米。纸箱最多可容纳积木多少块? ( 25÷5 ) × ( 20÷5 ) × ( 20÷5 ) =5×4×4 =80 (块) 答:纸箱最多可容纳积木 80 块。 6. 把 积木装入纸箱内,纸箱从里面量,长 25 厘米,宽和高都是 20 厘米。纸箱最多可容纳积木多少块? 5 厘米 3 厘米 3 厘米 ( 25÷3 ) × ( 20÷3 ) × ( 20÷5 ) ≈ 8×6×4 =192 (块) 答:纸箱最多可容纳积木 192 块。 7. 一块长方形铁皮,长 40cm, 宽 30cm, 像下图这样从 4 个角各剪掉一个边长为 5 厘米的正方形,然后做成盒子,这个盒子的容积是多少升? 40cm 30cm ( 40 - 5 × 2 ) × ( 30 - 5 × 2 ) × 5=3000 ( cm³ ) 3000cm³=3L 答: 这个盒子的容积是 3 升。 12ml=12cm3 24ml=24cm3 一个小球的体积: (24-12) ÷(4-1)=4(cm3) 一个大球的体积: 12-4=8(cm3) 左图长、宽、高分别是 4cm 、 3cm 、 3cm 。 它的体积是: 4×3×3=36 ( cm2 ) 右图长、宽、高分别是 4cm 、 3cm 、 4cm 。 它的体积是: 4×3×4=48 ( cm2 ) 10. 用 3 个长 5cm, 宽 4cm, 高 3cm 的长方体木块,拼成一个表面积最小的长方体。这个长方体的表面积是多少平方厘米? 5cm 4cm 3cm [5×4 + 5×(3×3) + 4×(3×3)]×2=(20 + 45 + 36)×2=202 ( cm² ) 答:这个长方体的表面积是 202 平方厘米。 3cm 2cm 6cm 6cm 11. 有一个形状如图的零件,由一个长方体和一个 正方体组合而成。长方体的长和宽都是 6cm ,高是 3cm ,正方体的棱长是 2cm 。求这个零件的表面积。 2 × 2 × 4 + 6 × 3 × 4 + 6 × 6 × 2 =16 + 72 + 72 =160 ( cm ² ) 答:这个零件的表面积是 160 平方厘米。 12 .由 27 个棱长为 1cm 的小正方体组成一个棱长为 3cm 的大正方体,若自上而下去掉中间的 3 个小正方体(如图所示),则剩下的几何体的表面积是多少平方厘米? 3×3×6 - 1×1×2 + 3×1×4 =54 - 2 + 12 =64 ( cm² ) 答:剩下的几何体的表面积是 64 平方厘米。 13 .从一个大长方体上切下一个体积是 128 立方厘米的小长方体(如图)。原来大长方体的体积是多少立方厘米? 22cm 8cm 切下部分 128÷8×22 =16×22 =352 (立方厘米) 答:原来大长方体的体积是 352 立方厘米。 14. 一个密封的长方体容器里面装有一些水,水深 9 厘米,如果把这个容器的右面做底,这时容器内的水深多少厘米? 36 10 12 36 10 12 36×10×9=3240 ( cm3 ) 3240÷(12×10)=27 ( cm ) 答:容器内的水深 27 厘米。 第四单元 分数的意义和性质 分数 分数的意义 分数单位 分子分母的意义 分数与除法的关系 分数大小的比较 分数的分类 真分数 假分数 整数 带分数 分数的基本性质 约分 通分 求一个数是另一个数的几分之几 分数和小数的互化 3 4 6 8 12 16 = = 2 3 4 6 8 12 = = 火眼金睛 观察等式,你有什么发现? 分数的分子和分母都乘或除以相同的数( 0 除外),分数的大小不变。 12 16 10 12 6 30 把最简分数的气球放飞 把其余气球上的分数约分 2 3 7 18 25 45 在相同时间内,贝贝跑了全程的 ,欢欢跑了全程的 ,谁跑的快呢? 56 67 1 6 和 5 9 3 5 和 4 7 5 6 和 3 4 把上面各组分数通分 . 5 12 和 4 9 计算下面各题 . 3 10 + 7 10 5 6 - 1 6 4 7 - 1 3 7 8 - 3 4 2 3 + 7 9 1 6 + 1 5 - 1 2 同分母分数相加、减, 分母不变, 只把分子相加、减. 异分母分数相加、减, 先通分, 然后按照同分母分数加、 减法的计算法则进行计算. 六一儿童节 , 五一班参加唱歌表演的 占全班学生人数的 , 跳舞的占 , 唱歌的比跳舞的多占学生总数的几 分之几 ? 3 5 1 9 5 12 + 1 5 ( )+( 1 12 + 4 5 ) 1 7 + 1 11 + 10 11 5 6 - 1 12 - 5 12 简便计算 整数加法交换律、结合律对 分数加法同样适用 。 在计算分数加、减法时,可 以根据题目的特征,灵活、 合理地选择简便方法. 在一次数学考试中 ,19 名学生 的得分如下 : 80 100 60 80 70 90 80 70 80 70 90 80 90 60 80 90 80 表示把单位 “ 1 ” 平均分成 5 份,取其中 2 份。还表示把 2 平均分成 5 份,取其中 1 份。 表示 2 个 。 表示 2 除以 5 的商。 (分数的意义) 一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。 分数的意义 单位“ 1” 表示: 一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数 1 来表示,通常把它叫做“ 1” 。 分数单位表示: 把单位“ 1” 平均分成若干份,表示其中一份的数叫分数单位。 单位 “ 1 ” 与分数单位的区别 1. 表示把单位“ 1” 平均分成 5 份,取其中 3 份的分数是( ),它的分数单位是( ),再添上( )个这样的分数单位就是单位“ 1” 。 2. 里面有( )个 。 ( )里面有 3 个 。 3 个 是( )。 3. 比比两条线段哪个长? 1 3 1 4 4. 写出数轴上点 A 、点 B 、点 C 、点 D 表示的分数 5. 请在一条数轴上表示下列分数: 分数与除法的关系 工程队修一条 5 千米长的公路, 7 天修完, ( 1 )平均每天修这条公路的( —— )千米; ( 2 )平均每千米要修( —— )天; ( 3 )平均每天修的占这条公路的( —— )。 工程队修一条 5 千米长的公路, 7 天修完, ( 1 )平均每 天 修这条公路的( —— ) 千米 ; 总千米 ÷ 总天数 = 每份数 5 ÷ 7 = (千米) 工程队修一条 5 千米长的公路, 7 天修完, ( 2 )平均每 千米 要修( —— ) 天 ; 总天数 ÷ 总千米 = 每份数 7 ÷ 5 = (天) 1 工程队修一条 5 千米长的公路, 7 天修完, ( 3 )平均 每天 修的占 这条公路 的( —— )。 1 ÷ 7 = 工程队修一条 5 千米长的公路, 7 天修完, ( 1 )平均每天修这条公路的( )千米; ( 2 )平均每千米要修( )天; ( 3 )平均每天修的占这条公路的( )。 1 ( 4 )把 4 米长的钢筋平均截成 5 段, 每 段 长( ) 米 ? 总米数 ÷ 总段数 = 每份数 4 ÷ 5 = (米) 每段 是钢筋 全长 的( —— ) 1 ÷ 5 = ( 5 )一个班有学生 50 人,其中 13 人被评为 “ 三好学生 ” 。 “ 三好学生 ” 占 全班人数 的( —— )。 13 ÷ 50 = 小结:分数与除法的关系 分数可以表示整数除法的商,在表示整数除法时,要用除数作分母,用被除数作分子。 用关系式表示: 被除数 ÷ 除数 = ———— 用字母可以表示成: a÷b= —— 因为除数不能等于 “ 0 ” ,所以 b 也不能等于 “ 0 ” 。 被除数 除数 a b 分数与除法是有区别的。除法是一种运算,它有运算符号,是一个算式;而分数是一个 “ 数 ” ,当它在除法算式中的时候,它可以表示除法算式的结果。 小结: 当一个量不能用整数个计量单位来表示时,可以用分数来表示。即分数可以表示一个量,分数还可以表示两个量之间的关系。 用分数表示下列除法算式的商。 6÷7= 11÷9= 15÷17= a÷b= 下图是长方形,它的面积是 5 平方厘米。请你用阴影表示出 5 8 平方厘米的部分 5 平方厘米 5 平方厘米 5 平方厘米的 1 8 5 平方厘米 1 平方厘米的 5 8 真分数和假分数 意义 特征 真分数 分子比分母小的分数 真分数小于 1 假分数 分子比分母大或分子和分母相等的分数 假分数都大于或等于 1 4 的分数单位是(  ),去掉(  )个 这样的分数单位就是最小的合数。 2 7   的分数单位是(  ),再添(  ) 个这样的分数单位就是最小的质数。 7 8 在  中, a 是不为 0 的自然数。 a 5 (真分数?假分数?最小假分数?最大真分数?) 填空 1. 分数的基本性质 分数的分子和分母同时乘或者除以相同的数( 0 除外),分数的大小不变。这叫做分数的基本性质。 2. 约分 把一个分数化成和它相等,但分子、分母都比较小的分数,叫做约分。 3. 通分 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 4. 最简分数 分子、分母只有公因数 1 的分数,叫做最简分数。 分数的基本性质 小结:分数的基本性质 约分 是分数基本性质中的:分子、分母同时除以相同的数( 0 除外)的体现。 通分 是分数基本性质中的:分子、分母同时乘上相同的数( 0 除外)的体现。 比较分数的大小 除了用同分母、同分子和通分比较方法外,还可以灵活运用其它的方法。 占单位 “ 1 ” 的一半不够 占单位 “ 1 ” 的一半多 ﹤ 不用通分的方法,比较分数的大小。 因为 ﹥ 所以( 1 — ) ﹤( 1— ) ﹤ 将分数化为最简分数,可以将分子分母分别 除以它们的最大公因数, 也可以不断地约分, 直到分子分母 互质 为止。 约分的技巧 分数 的分子加上 8 ,要使分数 大小不变,分母应该( )。 0.6=( ) ÷25= 12 ( ) 3 5 或 3÷5 一个分数的分子扩大 20 倍,分母缩小 20 倍,结果如何? 小数化分数,原来有几位小数就在 1 的后面写几个 0 做分母,把原来的小数去掉小数点作分子; 化成分数后,能约分的要约分。 分小互化 分小互化 分母是 10 、 100 、 1000…… 的分数化小数,可以直接去掉分母,看分母中 1 后面有几个零,就在分子中从最后一位起向左数出几位,点上小数点。 分小互化 分母不是 10 、 100 、 1000… … 的分数化小数,要用分母去除分子;除不尽的,可以根据需要按四舍五入法保留几位小数。 1 2 1 4 2 5 3 4 1 5 1 8 4 5 3 5 3 8 5 8 7 8 1 20 1 16 3 16 5 16 7 16 1 25 1 50 1 40 把下面的分数化成小数, 并且记住这些结果。 3 2 3 1 20 9 5 8 3 3.025 0.16 0.15 0.2222…… 0.6 3.125 0.375 3 20 0.16 3.025 2 9 3 5 3 1 8 ‹ ‹ ‹ ‹ ‹ ‹ 0.375 把下面各数按从小到大的顺序排列起来。 在( )里填上合适的分数 50 厘米 = ( )米 250 克 = ( )吨 45 分 = ( )时 400 米 = ( )千米 600 毫米 = ( — )米 40 厘米 = ( — )米 15 秒 = ( — )分 2500 平方米 = ( — )公顷 50 100 1 2 1 4 3 4 2 5 1 1 4 4 3 2 5 5 第五单元 图形变换 图形变换的复习 、注重整体把握教材 已学的知识 二年级: 初步感知生活中的轴对称、平移和旋转现象。 初步认识轴对称图形,能在方格纸上画简单的轴对称图 形和沿水平或垂直方向画平移后的图形。 现学的知识 五年级: 进一步认识轴对称,掌握图形成轴对称的特征和性质。 能 在方格纸上画出一个图形的轴对称图形。 进一步认识旋转,能在方格纸上把简单图形旋转 90° 。 初步学会用平移、对称和旋转的方法设计图案。 将学知识 六年级: 圆的对称性。 二、注重知识的把握 意义 性质 特征 轴对称 把一个图形沿着一条直线折叠,如果它能够与另一个图形重合,那么这两个图形成轴对称。这条直线就是对称轴。 对称点到对称轴的距离相等。 沿对称轴对折,对称点、对称线段、对称角度重合。 旋转 物体绕着某一点或轴运动,这种运动现象称为旋转。 图形绕着某一点旋转一定的度数,图形的对称点、对称线段都旋转相应的度数,对应点到旋转点的距离相等,对应的线段、对应的角都相等。 图形旋转后,形状、大小都没有发生变化,只是位置变化了。 平移 对应点所连接的线段平行且相等。 旋转三要素:旋转点(或旋转中心)、旋转方向、旋转角度 注意意义的区别 轴对称是沿着一条直线对折后,两个图形能够完全重合;而轴对称图形是指一个图形沿着一条直线对折后,图形的两部分之间能够完全重合。 轴对称图形是指一个图形,而大小形状完全相同的两个图形才能成轴对称。 ( ) √ ( ) × 成轴对称的两个图形,对称轴只有一条。轴对称图形可以有一条、多条或无数条对称轴。 下列图形中对称轴最多的是( ) A :角 B :等边三角形 C :线段 D :正方形 D 3 90° 180° 三、画法 (一)一个图形的轴对称图形的画法 1 、 定: 确定所给图形的关键点,如:图形定点,相交 点,端点。 2 、 数 (或量):数出或量出图形的关键点到对称轴的距离。 3 、 找 (或量):在对称轴另一侧找出这些点的对称点。 4 、 连 :按所给图形的形状连接各对称点。 (二)简单图形旋转 90° 的画法 1. 找出图形的关键点或线段。 2. 借助三角板(或量角器)作原图形线段或关键点与旋转中心所在线段的垂线。 3. 在所做垂线上量出与原线段相等的长度(即找出原图关键点的对应点)。 4. 顺次连接所画出的对应点。 ( 1 )画出图①的全部对称轴。 ( 2 )画出图②向上平移 3 格后的图形。 图① 图② A O B ( 3 )画出绕点 O ,顺时针旋转 90 后的图形。 A O B A' A O B A' A O B A' B' A O B A' B' 四、注重空间观念的训练 (图一)三角形绕点 O ( )时针旋转了( )度。 (图二)三角形 绕点 O ( )时针旋转了( )度。 逆 90 顺 90 旋转不改变图形的 形状 、 大小 ,只改变图形的 位置 。 图(二) o 图(一) o 第六单元 分数的加法和减法 分数的加法和减法 分数加减法的简算 异分母分数加减法 同分母分数连减 同分母分数连加 同分母分数加减法 分数加减混合运算 异分母分数连加 异分母分数连减 同分母分数相加、减,分母不变,只把分子相加减。 1. 同分母分数加减法 ( 1 )同分母分数加法的意义及计算方法 ( 2 )同分母分数减法的意义及计算方法 ( 3 )同分母分数连加、连减 异分母分数加减法,先通分,转化为同分母分数进行计算。 2. 异分母分数加减法 ( 1 )异分母分数加法 ( 2 )异分母分数减法 ( 3 )分数加减法混合运算 a. 不带括号的分数加减法混合运算 b. 带括号的分数加减法混合运算 加法的运算定律和减法的性质同样适应于分数中的计算。 2 7 + 3 7 3 8 + 1 8 5 12 - 3 12 4 9 - 2 9 25 36 - 17 36 - 5 36 9 11 - 1. 口算 - 7 11 2 11 注意化简和简算 2. 计算 异分母分数加减法,先通分,转化为同分母分数进行计算。 加法的运算定律和减法的性质同样适应于分数中的计算。 1 2 + 1 3 1 3 + 1 7 1 5 - 1 8 1 9 - 1 16 先计算下面各题,想一想怎样计算比较快? 用字母表示为: 1 a ± 1 b = b ± a ab a 、 b 均不为 0 1 2 1 4 1 8 1 16 1 32 + + + + 1 32 1 4 1 8 1 16 1 2 1 2 1 4 1 8 1 16 1 32 + + + + 拆项法: 1 2 = 1 - + 1 2 - 1 4 + 1 4 - 1 8 + 1 8 - + 1 16 - 1 32 1 16 = = 1 1 32 - 31 32 学校图书馆有故事书占图书总数的 , 工具书占总数的 , 剩下的是科技书,科技书占总数的 几分之几? 1- - = - - = 答:科技书占总数的 。 在圆圈内填上适当的分数,使每行、每列的三个数加起来的和都等于 1 。 统计复习建议 统计图表的复习 (一)创设情境:出示三个统计表 表一 五( 1 )班学生爱吃食物人数统计表 食物类别 肉禽类 鱼虾类 蔬菜类 合计 人数 18 20 7 45 表二 光明小学四年级同学喜欢各种玩具的人数统计表 玩具名称 小汽车 洋娃娃 跳棋 拼图 男生人数 22 5 15 18 女生人数 8 24 17 14 表三 光明小学一 ---- 六年级喜欢看科普读物人数统计表 年级 一 二 三 四 五 六 人数 20 26 32 47 68 83 提问: 1. 如果将上面的三组数据用统计图的形式表 示,你会分别绘制成什么统计图?为什么? 2. 这些统计图有什么特点? 表一 五( 1 )班学生爱吃食物人数统计表 食物类别 肉禽类 鱼虾类 蔬菜类 合计 人数 18 20 7 45 表二 光明小学四年级同学喜欢各种玩具的人数统计表 玩具名称 小汽车 洋娃娃 跳棋 拼图 男生人数 22 5 15 18 女生人数 8 24 17 14 表一: 单式条形统计图 表二: 复式条形统计图 表三: 单式折线统计图 表三 光明小学一 ---- 六年级喜欢看科普读物人数统计表 年级 一 二 三 四 五 六 人数 20 26 32 47 68 83 条形统计图 折线统计图 特点 用一个单位长度表示一定的数量 用直条的长短表 示数量的多少。 用折线起伏表示数量 的增减变化。 作用 从图中能清楚地 看出各数量的多 少,便于相互比 较。 从中能清楚地看出数量 的增减变化情况,也能 看出数量的多少。 例如:关于甲、乙两地月平均气温的 情况用复式折线统计图表示。 复式折线统计图的特点: 便于比较两种数据的变化趋势和差异性。 例如:关于国庆 60 周年与 50 周年 阅兵式方阵数量统计图。 复式条形统计图的特点: 便于比较不同组之间的同类数据。 运用知识解决问题 (二) 1. 选择 ( 1 )心脏科要把病人的血压变化情况绘制成统计图,最佳选择是( ) A 条形统计图 B 折线统计图 ( 2 )要表示某校各班向灾区捐款情况,选用( )比较合适。 A 条形统计图 B 折线统计图 2. 动手操作 ( 1 )如果你是世界环保组织成员,想呼吁大家关注碳排 放量,让大家强烈地感受到一定要降低碳排放量, 你将选择 ( 折线 ) 统计图来表达。 理由是: 突出空气中碳的排放量越来越高的发展趋势。 ( 2 )绘制统计图 2000-2008 年中国碳排放量统计表 年份 2000 2002 2004 2006 2008 碳排放量(百万吨) 3000 3500 5200 5900 6500 绘制的是我国的碳排放量的折线统计图, 修改的是统计图的名称和图例 ( 3 )绘制、修改、完善统计图 填空 1 . 把 42 分解质因数是( ) 。 2 . 能同时被 2 、 5 、 3 整除的最小 三位数是( )。 3 .10 以内质数的乘积是( )。 4. 从 1 — 9 的自然数中, ( ) 和 ( )是相邻的两个合数; ( ) 和( )是相邻的两个 质数。 用铁丝围成长、宽、高分别是 6 分米、 4 分米、 3 分米的长方 体模型三个,至少需要多少分 米铁丝? 学校组织郊游,可咱班还有一个同学没来,得赶紧给他打电话呀。 我知道他家电话号码。左起第 1 位数是最小的质数 ,第 2 和 5 位数是 10 以内 3 的最大倍数,第 3 , 4 位是最小的合数,第 6 位是 10 以内最大的质数。最后一位是 10 以内最大的合数。 小朋友,你知道那个同学的电话号码了吗? 幼儿园买来一些糖果, 第一次吃了它的 , 第二次比第一次少吃 了这些糖果的 , 两次一共吃了这些糖果 的几分之几? 1 5 1 6 一块长方体石料,体积是 64 立方分米, 已知石料的长是 8 分米,宽是 4 分米。 石料的高是多少分米?(用方程解) 某家超市一分店、二分店销售饮料 情况如下表。 根据表中数据,制成折线统计图, 并回答后面的问题。 ( 1 ) 两个分店销售额最高的是( ) . ( 2 )一分店从( )月到( )月 销售额增长得最快。 ( 3 )二分店从( )月到( )月 销售额增长得最快。