- 81.53 KB
- 2022-02-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
数与形
——剪纸中的数学问题
教学目标:
1. 借助几何直观探索剪纸中的数学问题,帮助学生积累数学活动经验和数学思想方法。
2. 让学生体验经历计算中探索规律形成的过程,发展观察、分析、推理、归纳的能力,积累活动经验,培养数形结合思想。
3. 发展学生学习数学的兴趣,感悟数学的魅力。
教学重点:让学生经历画图、尝试计算、逐步观察、分析、推理、发现规律的过程,发展学生观察、分析、推理、归纳的能力以及借助集合直观解决问题的能力。
教学难点: 理解探索规律过程中所运用的分析推理、归纳等方法。
教具准备:长方形、正方形、圆形、线段图
教学过程:
一、 导入新课
1、 教师:你吃过拉面吗?拉面馆的师傅把一根很粗的面条两端捏合在一起
一拉,变成了两根面条,然后对折,再拉开再对折……。面馆师傅拉多少次才能超过1000根面条?借助手中的绳子和表格探索结果。
次数
根数
2、教师小结,引出课题
教师:借助图形和表格不但能帮我们找到了正确的答案,还可以帮我们解决复杂的数学问题,这节课我们就来研究“数与形”。
一、 探究新知
(一)引出新知
1、 教师:教师:选择你喜欢的图形,把老师叙述的意思在你的纸上画
出来,并标上次数。小明做剪纸游戏,他第一次剪下一张纸的一半,接着又剪下剩下的一半,再剪下剩下的一半,这样连续剪了五次。
2、 展示学生的画法,(不同的画法,表达的意思却是一样的)并出示教师的画法。(这样的画法便于我们分析。)
(二)提出问题
1、 教师:看着这个图,你发现了什么规律?
学生:每次都是用剩下的一半,也就是前一个数的12
2、 教师:如果要继续剪下去,可以吗?剪得完吗?教师课件演示,渗透极限思想。
3、 你能把相应的分数在图上表示出来吗?学生先标,然后老师也标上分数,方便学生提问。
4、 看着这个图,你能提出什么数学问题?并列出算式。
预设学生问题:
①2次剪下几分之几?
②3次剪下几分之几?
③ 前5次一共剪下几分之几?
④7次后还剩下几分之几?
⑤……
N次后一共剪下几分之几?还剩下几分之几?
列出算式 :
生1:每天剪下一半,也就是剪下,第二天剪下,也就是
生2:++
生3:那五次就是++++=
生4:那七次就是12+14 +18 +116 +132 +164 +1128=
生5:那n次呢?怎么列式?
教师:对呀,n次怎么列式?仔细观察算式中的分母,看看你有什么发现?
生:就是121,就是122,就是123,所以n次就是12n,列出的算式就是
12+14 +18 +116 +132 +164 +1128……12n=
(三)解决问题
1、教师:看我们列出了这么多的算式,怎么计算出结果呢?
出示探究要求
①仔细观察手中的学具,想一想,怎样计算?提示:可以从简单处入手。
②先独立解决,然后在小组内说说自己的发现。
学习单:
第一次:12
第二次:12+14=
第三次:12+14 +18=
第四次:12+14 +18 +116=
第五次:12+14 +18 +116 +132=
……
第n次:12+14 +18 +116 +132 +164 +1128……12n=
(四)展示交流
教师:刚才通过大家的操作、观察、分析、计算,有没有什么发现?我们一起来交流一下。
学生交流:
方法一:通分计算(大屏幕展示)
方法二:寻找规律
+=+=+=+=
++=+++=……
所以:12+14 +18 +116 +132 +164 +1128=127128
12+14 +18 +116 +132 +164 +1128……12n=1-12n=或2n-12n
这个算式中的后一个分数都是前一个分数的一半,我们发现依次加下去,越来越接近1,与1就差一点点。(差一个分数单位)所以结果就用1减去最后一个分数的分数单位。
一、 回顾反思
1、 教师:刚才我们同学们经过自己的探究发现规律,用规律计算比较
简单。我们一起来回顾一下我们的探究过过程。我们首先借助手中的学具(圆形、正方形、线段图)把这些分数在图上表示出来,结合图对这些算式进行观察,分析,接着从简单处开始进行计算,又发现算式后面的结果接近1,和1就差一个分数单位。因此推理出这类算式的规律。如果我们直接看着长长的算式直接算会怎么样?我们是把算式拆开来计算的,也就是从简单处入手,由易到难。(板书:观察、分析、推理、归纳)
数学文化:《庄子•天下篇》引用过这样的一句话:“一尺之棰,日取其半,万世不竭”。其含义是:一尺长的木棍,每天截去它的一半,千秋万代也截不完。可见,我们中国的文化多么博大精深。
四、灵活应用:
1、试着用你学习的方法计算下面这道题:
++++=
+++=
如果把这一类归纳推广一下,就可以表示为:
五、课堂小结
1教师:说一说今天这节课你对数与形有什么新的认识和收获或感悟,交流对用“数与形结合”的方法解决问题的感悟。
(数形结合的方法把抽象的代数问题形象化,使其直观、简洁、易懂)
2、教师:数形结合不仅是一种方法,还是一种思想,那我们就要:见数(思形),见形(想数),对于数形结合的思想,我国数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”你理解他这句话的含义吗?
3、教师:其实跳出数学,看看我们大自然当中,像这样完美结合的事物有很多。(对比图)
教师:没有水土,树木不能生存,没有树木,水土面临流失。这种相互依存,相互帮助,相互成全的事情还有很多,那也就是说只有这样,我们的大自然才会美好,社会才会和谐,对不对?其实在生活中我们与同学交往和谐相处相互帮助。
练习
试一试,用数形结合的方法尝试计算:
13+19+127+181+1243=
14+116+164+1256=