• 1.26 MB
  • 2022-02-11 发布

快乐学堂小升初数学专题十七

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第八讲 行程问题(二)‎ 教学目标:‎ 1、 能够利用以前学习的知识理清变速变道问题的关键点;‎ 2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题;‎ 3、 变速变道问题的关键是如何处理“变”;‎ 4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.‎ 知识精讲:‎ 比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。‎ 从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。‎ 我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用来表示,大体可分为以下两种情况:‎ 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。‎ ‎,这里因为时间相同,即,所以由 得到,,甲乙在同一段时间t内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。‎ ‎,这里因为路程相同,即,由 得,,甲乙在同一段路程s上的时间之比等于速度比的反比。‎ 行程问题常用的解题方法有 ‎⑴公式法 即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;‎ ‎⑵图示法 在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;‎ ‎⑶比例法 行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;‎ ‎⑷分段法 在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;‎ ‎⑸方程法 在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.‎ 例题精讲:[来源:学,科,网Z,X,X,K]‎ 模块一、时间相同速度比等于路程比 【例 1】 甲、乙二人分别从 A、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A、 B 两地相距多少千米?‎ 【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了个全程,与第一次相遇地点的距离为个全程.所以 A、 B两地相距 (千米).‎ 【例 2】 B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。‎ 【解析】 根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:‎ 因为丙的速度是甲、乙的3倍,分步讨论如下:‎ (1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信 当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信[来源:学科网ZXXK]‎ 在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟),‎ 此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟 所以共需要时间为5+5+15+15+25+25=90(分钟)‎ (2) 同理先追及甲需要时间为120分钟 【例 3】 ‎ (“圆明杯”数学邀请赛) 甲、乙两人同时从、两点出发,甲每分钟行米,乙每分钟行 米,出发一段时间后,两人在距中点的处相遇;如果甲出发后在途中某地停留了分钟,两人将在距中点的处相遇,且中点距、距离相等,问、两点相距多少米?‎ 【分析】 甲、乙两人速度比为,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的,乙走了全程的.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的,甲行了全程的.由于甲、乙速度比为,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了,所以甲停留期间乙行了,所以、两点的距离为(米).‎ 【例 1】 甲、乙两车分别从 A、 B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速度减少 20%,乙的速度增加 20%.这样当甲到达 B 地时,乙离 A地还有 10 千米.那么 A、B 两地相距多少千米?‎ 【解析】 两车相遇时甲走了全程的,乙走了全程的,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙的速度比为 ,所以甲到达 B 地时,乙又走了,距离 A地,所以 A、 B 两地的距离为 (千米).‎ 【例 2】 早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?‎ 【解析】 从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是 l5 千米.下午 3 点时,两人之间的距离还是 l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3 点时小王超过小张 15千米,可知两人的速度差是每小时 30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走 30 千米,那小张 3 小时走了15 30 45= + 千米,故小张的速度是 45 ÷3 =15千米/时,小王的速度是15 +30 =45千米/时.全程是 45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。‎ 【例 3】 从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。其中下坡路与上坡路的距离相等。陈明开车从甲地到乙地共用了 3 小时,其中第一小时比第二小时多走 15 千米,第二小时比第三小时多走 25 千米。如果汽车走上坡路比走平路每小时慢 30 千米,走下坡路比走平路每小时快 15 千米。那么甲乙两地相距多少千米? ‎ 【解析】 ‎⑴由于3个小时中每个小时各走的什么路不明确,所以需要先予以确定.‎ 从甲地到乙地共用3小时,如果最后一小时先走了一段平路再走上坡路,也就是说走上坡路的路程不需要1小时,那么由于下坡路与上坡路距离相等,而下坡速度更快,所以下坡更用不了1小时,这说明第一小时既走完了下坡路,又走了一段平路,而第二小时则是全在走平路.这样的话,由于下坡速度大于平路速度,所以第一小时走的路程小于以下坡的速度走1小时的路程,而这个路程恰好比以平路的速度走1小时的路程(即第二小时走的路程)多走15千米,所以这样的话第一小时走的路程比第二小时走的路程多走的少于15千米,不合题意,所以假设不成立,即第三小时全部在走上坡路.‎ 如果第一小时全部在走下坡路,那么第二小时走了一段下坡路后又走了一段平路,这样第二小时走的路程将大于以平路的速度走1小时的路程,而第一小时走的路程比第二小时走的路程多走的少于15千米,也不合题意,所以假设也不成立,故第一小时已走完下坡路,还走了一段平路.‎ 所以整个行程为:第一小时已走完下坡路,还走了一段平路;第二小时走完平路,还走了一段上坡路;第三小时全部在走上坡路.[来源:学§科§网]‎ ‎⑵由于第二小时比第三小时多走25千米,而走平路比走上坡路的速度快每小时30千米.所以第二小时内用在走平路上的时间为小时,其余的小时在走上坡路;[来源:Z.xx.k.Com]‎ 因为第一小时比第二小时多走了15千米,而小时的下坡路比上坡路要多走千米,那么第一小时余下的下坡路所用的时间为小时,所以在第一小时中,有小时是在下坡路上走的,剩余的小时是在平路上走的.‎ 因此,陈明走下坡路用了小时,走平路用了小时,走上坡路用了小时.‎ ‎⑶因为下坡路与上坡路的距离相等,所以上坡路与下坡路的速度比是.那么下坡路的速度为千米/时,平路的速度是每小时千米,上坡路的速度是每小时千米.‎ 那么甲、乙两地相距(千米).‎ 模块二、路程相同速度比等于时间的反比 【例 1】 甲、乙两人同时从地出发到地,经过3小时,甲先到地,乙还需要1小时到达地,此时甲、乙共行了35千米.求,两地间的距离.‎ 【分析】 甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为,那么在3小时内的路程之比也是;又两人路程之和为35千米,所以甲所走的路程为千米,即,两地间的距离为20千米.‎ 【例 2】 在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?‎ 【解析】 由题意知,甲行 4 分相当于乙行 6 分.(抓住走同一段路程时间或速度的比例关系) 从第一次相遇到再次相遇,两人共走一周,各行 12 分,而乙行 12 分相当于甲行 8 分,所以甲环行一周需 12+8=20(分),乙需 20÷4×6=30(分).‎ 【例 3】 上午 8 点整,甲从 A地出发匀速去 B 地,8 点 20 分甲与从 B 地出发匀速去 A地的乙相遇;相遇后甲将速度提高到原来的 3 倍,乙速度不变;8 点 30 分,甲、乙两人同时到达各自的目的地.那么,乙从 B 地出发时是 8 点几分.‎ 【解析】 ‎ 甲、乙相遇时甲走了 20 分钟,之后甲的速度提高到原来的 3 倍,又走了 10 分钟到达目的地,根据路程一定,时间比等于速度的反比,如果甲没提速,那么后面的路甲需要走10× 3= ‎ ‎30分钟,所以前后两段路程的比为 20 : 30 =2 : 3,由于甲走 20 分钟的路程乙要走 10 分钟,所以甲走 30 分钟的路程乙要走 15 分钟,也就是说与甲相遇时乙已出发了 15 分钟,所以乙从 B 地出发时是 8 点5 分.‎ 【例 1】 小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条路所用的时间一样多.已知下坡的速度是平路的1.6 倍,那么上坡的速度是平路速度的多少倍?‎ 【解析】 设小芳上学路上所用时间为 2,那么走一半平路所需时间是1.由于下坡路与一半平路的长度相同,根据路程一定,时间比等于速度的反比,走下坡路所需时间是,因此,走上坡路需要的时间是,那么,上坡速度与平路速度的比等于所用时间的反比,为,所以,上坡速度是平路速度的倍.‎ 【例 2】 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程的时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?‎ 【分析】 当以原速行驶到全程的时,总时间也用了,所以还剩下分钟的路程;修理完毕时还剩下分钟,在剩下的这段路程上,预计时间与实际时间之比为,根据路程一定,速度比等于时间的反比,实际的速度与预定的速度之比也为,因此每分钟应比原来快米.‎ 小结:本题也可先求出相应的路程和时间,再采用公式求出相应的速度,最后计算比原来快多少,但不如采用比例法简便.‎ 【例 3】 ‎ (“我爱数学夏令营”数学竞赛)一列火车出发小时后因故停车小时,然后以原速的前进,最终到达目的地晚小时.若出发小时后又前进公里因故停车小时,然后同样以原速的前进,则到达目的地仅晚小时,那么整个路程为________公里.‎ 【解析】 如果火车出发小时后不停车,然后以原速的前进,最终到达目的地晚小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为,所以原计划要花小时,现在要花小时,若出发小时后又前进公里不停车,然后同样以原速的前进,则到达目的地仅晚小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为,所以原计划要花小时,现在要花小时.所以按照原计划公里的路程火车要用小时,所以火车的原速度为千米/小时,整个路程为千米.‎ 【例 4】 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米?‎ 【解析】 从开始出发,车速即比原计划的速度提高了1/9,即车速为原计划的10/9,则所用时间为原计划的1÷10/9=9/10,即比原计划少用1/10的时间,所以一个半小时等于原计划时间的1/10,原计划时间为:1.5÷1/10=15(小时);按原计划的速度行驶 280 千米后,将车速提高1/6,即此后车速为原来的7/6,则此后所用时间为原计划的1÷7/6=6/7,即此后比原计划少用1/7的时间,所以1 小时 40 分等于按原计划的速度行驶 280 千米后余下时间的1/7,则按原计划的速度行驶 280‎ ‎ 千米后余下的时间为: 5/3÷1/7=35/3(小时),所以,原计划的速度为:84(千米/时),北京、上海两市间的路程为:84 ×15= 1260(千米).‎ 【例 1】 一辆汽车从甲地开往乙地,如果车速提高 20%可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高 30% ,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?‎ 【解析】 车速提高 20%,即为原速度的6/5,那么所用时间为原来的5/6,所以原定时间为小时;如果按原速行驶一段距离后再提速 30% ,此时速度为原速度的13/10,所用时间为原来的10/13,所以按原速度后面这段路程需要的时间为小时.所以前面按原速度行使的时间为小时,根据速度一定,路程比等于时间之比,按原速行驶了全部路程的 【例 2】 一辆车从甲地开往乙地.如果车速提高,可以比原定时间提前1小时到达;如果以原速行驶120千米后,再将车速提高,则可以提前40分钟到达.那么甲、乙两地相距多少千米?‎ 【分析】 车速提高,速度比为,路程一定的情况下,时间比应为,所以以原速度行完全程的时间为小时.‎ 以原速行驶120千米后,以后一段路程为考察对象,车速提高,速度比为,所用时间比应为,提前40分钟到达,则用原速度行驶完这一段路程需要小时,所以以原速行驶120千米所用的时间为小时,甲、乙两地的距离为千米.‎ 【例 3】 甲火车分钟行进的路程等于乙火车分钟行进的路程.乙火车上午从站开往站,开出若干分钟后,甲火车从站出发开往站.上午两列火车相遇,相遇的地点离、两站的距离的比是.甲火车从站发车的时间是几点几分?‎ ‎[分析]甲、乙火车的速度比已知,所以甲、乙火车相同时间内的行程比也已知.由此可以求得甲火车单独行驶的距离与总路程的比.‎ 根据题意可知,甲、乙两车的速度比为.‎ 从甲火车出发算起,到相遇时两车走的路程之比为,而相遇点距、两站的距离的比是.说明甲火车出发前乙火车所走的路程等于乙火车个小时所走路程的.也就是说乙比甲先走了一个小时的四分之一,也就是15分钟.所以甲火车从站发车的时间是点分.‎ 模块三、比例综合题 【例 4】 小狗和小猴参加的100米预赛.结果,当小狗跑到终点时,小猴才跑到90米处,决赛时,自作聪明的小猴突然提出:小狗天生跑得快,我们站在同一起跑线上不公平,我提议把小狗的起跑线往后挪10米.小狗同意了,小猴乐滋滋的想:“这样我和小狗就同时到达终点了!”亲爱的小朋友,你说小猴会如愿以偿吗?‎ 【解析】 小猴不会如愿以偿.第一次,小狗跑了100米,小猴跑了90米,所以它们的速度比为 ‎;那么把小狗的起跑线往后挪10米后,小狗要跑110米,当小狗跑到终点时,小猴跑了米,离终点还差1米,所以它还是比小狗晚到达终点.‎ 【例 1】 甲、乙两人同时从 A地出发到 B 地,经过 3 小时,甲先到 B 地,乙还需要 1 小时到达 B 地,此时甲、乙共行了 35 千米.求 A, B 两地间的距离.‎ 【解析】 甲、乙两个人同时从A地到B地,所经过的路程是固定[来源:Zxxk.Com]‎ 所需要的时间为:甲3个小时,乙4个小时(3+1)‎ 两个人速度比为:甲:乙=4:3‎ 当两个人在相同时间内共行35千米时,相当与甲走4份,已走3份,‎ 所以甲走:35÷(4+3)×4=20(千米),所以,A、B两地间距离为20千米 【例 2】 ‎、、三辆汽车以相同的速度同时从甲市开往乙市.开车后小时车出了事故,和车照常前进.车停了半小时后以原速度的继续前进.、两车行至距离甲市千米时车出了事故,车照常前进.车停了半小时后也以原速度的继续前进.结果到达乙市的时间车比车早小时,车比车早小时,甲、乙两市的距离为 千米.‎ ‎【分析】如果车没有停半小时,它将比车晚到小时,因为车后来的速度是车的,即两车行 小时的路车比车慢小时,所以慢小时说明车后来行了小时.从甲市到乙市车要行小时.‎ 同理,如果车没有停半小时,它将比车晚到小时,说明车后来行了小时,这段路车需行小时,也就是说这段路是甲、乙两市距离的.‎ 故甲、乙两市距离为(千米).‎ 【例 3】 甲、乙二人步行远足旅游,甲出发后小时,乙从同地同路同向出发,步行小时到达甲于分钟前曾到过的地方.此后乙每小时多行米,经过小时追上速度保持不变的甲.甲每小时行多少米?‎ ‎[分析]根据题意,乙加速之前步行小时的路程等于甲步行小时的路程,所以甲、乙的速度之比为,乙的速度是甲的速度的倍;‎ 乙加速之后步行小时的路程等于甲步行小时的路程,所以加速后甲、乙的速度比为.加速后乙的速度是甲的速度的倍;‎ 由于乙加速后每小时多走500米,所以甲的速度为米/小时.‎ 【例 4】 甲、乙两人分别骑车从地同时同向出发,甲骑自行车,乙骑三轮车.12 分钟后丙也骑车从地出发去追甲.丙追上甲后立即按原速沿原路返回,掉头行了3千米时又遇到乙.已知乙的速度是每小时千米,丙的速度是乙的2倍.那么甲的速度是多少?‎ [分析] 丙的速度为千米/小时,丙比甲、乙晚出发12分钟,相当于退后了 千米后与甲、乙同时出发.‎ 如图所示,相当于甲、乙从,丙从同时出发,丙在处追上甲,此时乙走到处,然后丙掉头走了3千米在处和乙相遇.‎ 从丙返回到遇见乙,丙走了3千米,所以乙走了千米,故为千米.那么,在从出发到丙追上甲这段时间内,丙一共比乙多走了千米,由于丙的速度是乙的速度的2倍,因此,丙追上甲时,乙走了千米,丙走了15千米,恰好用1个小时;而此时甲走了千米,因此速度为(千米/小时).‎ 【例 1】 甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的 1.5 倍,而且甲比乙速度快。两人出发后 1 小时,甲与乙在离山顶 600 米处相遇,当乙到达山顶时,甲恰好到半山腰。那么甲回到出发点共用多少小时? ‎ 【解析】 甲如果用下山速度上山,乙到达山顶时,甲恰好到半山腰,‎ 说明甲走过的路程应该是一个单程的 1×1.5+1/2=2 倍,‎ 就是说甲下山的速度是乙上山速度的 2 倍。 ‎ 两人相遇时走了 1 小时,这时甲还要走一段下山路,这段下山路乙上山用了 1 小时,所以甲下山要用1/2 小时。 甲一共走了 1+1/2=1.5(小时) ‎ 【例 2】 一条东西向的铁路桥上有一条小狗,站在桥中心以西米处.一列火车以每小时千米的速度从西边开过来,车头距西桥头三个桥长的距离.若小狗向西迎着火车跑,恰好能在火车距西桥头米时逃离铁路桥;若小狗以同样的速度向东跑,小狗会在距东桥头米处被火车追上.问铁路桥长多少米,小狗的速度为每小时多少千米?‎ ‎【分析】设铁路桥长为米.‎ 在小狗向西跑的情况下:小狗跑的路程为米,火车走的路程为米;‎ 在小狗向东跑的情况下:小狗跑的路程为米,火车走的路程为米;‎ 两种情况合起来看,在相同的时间内,小狗一共跑了米,火车一共走了米;‎ 因为是的倍,所以火车速度是小狗速度的倍,所以小狗的速度为(千米/时);‎ 因为火车速度为小狗速度的倍,所以,解此方程得:.‎ 所以铁路桥全长为米,小狗的速度为每小时千米.‎ 【例 3】 如图,点分,有甲、乙两人以相同的速度分别从相距米的、两地顺时针方向沿长方形的边走向点,甲点分到后,丙、丁两人立即以相同速度从点出发,丙由向走去,点分与乙在点相遇,丁由向走去,点分在点被乙追上,则连接三角形的面积为 平方米.‎ ‎ ‎ ‎【分析】如图,由题意知,丙从到用分钟,丁从到用分钟,乙从经到用 分钟,说明甲、乙速度是丙、丁速度的倍.因为甲走用分钟,所以丙走要用(分钟),走用(分钟).‎ ‎    因为乙走用分钟,所以丙走用(分钟).‎ ‎    因为长米,所以丙每分钟走(米).于是求出 ‎    (米),(米),(米).‎ ‎    ‎ ‎     (平方米).‎ 【例 1】 如图,长方形的长与宽的比为,、为边上的三等分点,某时刻,甲从点出发沿长方形逆时针运动,与此同时,乙、丙分别从、出发沿长方形顺时针运动.甲、乙、丙三人的速度比为.他们出发后分钟,三人所在位置的点的连线第一次构成长方形中最大的三角形,那么再过多少分钟,三人所在位置的点的连线第二次构成最大三角形?‎ ‎[分析]长方形内最大的三角形等于长方形面积的一半,这样的三角形一定有一条边与长方形的某条边重合,并且另一个点恰好在该长方形边的对边上.‎ 所以我们只要讨论三个人中有两个人在长方形的顶点上的情况.‎ 将长方形的宽等分,长等分后,将长方形的周长分割成段,设甲走段所用的时间为个单位时间,那么一个单位时间内,乙、丙分别走段、段,由于、、两两互质,所以在非整数单位时间的时候,甲、乙、丙三人最多也只能有个人走了整数段.所以我们只要考虑在整数单位时间,三个人运到到顶点的情况.‎ 对于甲的运动进行讨论:‎ 时间(单位时间)‎ ‎……‎ 地点 对于乙的运动进行讨论:‎ 时间(单位时间)‎ ‎……‎ 地点 对于丙的运动进行讨论:‎ 时间(单位时间)‎ ‎……‎ 地点 需要检验的时间点有、、、、……‎ 个单位时间的时候甲和丙重合无法满足条件.‎ 个单位时间的时候甲在上,三人第一次构成最大三角形.所以一个单位时间相当于分钟.‎ 个单位时间的时候甲、乙、丙分别在、、的位置第二次构成最大三角形.‎ 所以再过分钟.三人所在位置的点的连线第二次构成最大三角形?‎ 课后作业 练习1. 甲、乙两车分别从 A、B 两地出发,在 A、B 之间不断往返行驶,已知甲车的速度是乙车的速度的 ‎,并且甲、乙两车第 2007 次相遇(这里特指面对面的相遇)的地点与第 2008 次相遇的地点恰好相距 120 千米,那么,A、B 两地之间的距离等于多少 千米? ‎ 【解析】 甲、乙速度之比是 3:7,所以我们可以设整个路程为 3+7=10 份,这样一个全程中甲走 3 份,第 2007 次相遇时甲总共走了 3×(2007×2-1)=12039 份,第 2008 次相遇时甲总共走了 3×(2008×2-1)=12045 份,所以总长为 120÷[12045-12040-(12040-12039)]×10=300 米. ‎ 练习1. 甲、乙两人分别从、两地同时出发,相向而行,出发时他们的速度之比是,他们第一次相遇后甲的速度提高了,乙的速度提高了,这样,当甲到达地时,乙离地还有千米,那么、两地的距离是多少千米?‎ ‎【分析】因为他们第一次相遇时所行的时间相同,所以第一次相遇时甲、乙两人行的路程之比也为,相遇后,甲、乙两人的速度比为;到达地时,即甲又行了份的路程,这时乙行的路程和甲行的路程比是,即乙的路程为.乙从相遇后到达还要行份的路程,还剩下(份),正好还剩下千米,所以份这样的路程是(千米).‎ ‎、两地有这样的(份),因此、两地的总路程为:(千米).‎ 练习2. 小明和小刚进行米短跑比赛(假定二人的速度均保持不变).当小刚跑了米时,小明距离终点还有米,那么,当小刚到达终点时,小明距离终点还有多少米?‎ ‎【分析】当小刚跑了米时,小明跑了米,在相同时间里,两人的速度之比等于相应的路程之比,为;在小刚跑完剩下的米时,两人经过的时间相同,所以两人的路程之比等于相应的速度之比,则可知小明这段时间内跑了米,还剩下米.‎ 练习3. 客车和货车同时从甲、乙两地的中点向反向行驶,3小时后客车到达甲地,货车离乙地还有22千米,已知货车与客车的速度比为,甲、乙两地相距多少千米?‎ 【分析】 货车与客车速度比,相同时间内所行路程的比也为,那么客车走的路程为(千米),为全程的一半,所以全程是(千米).‎ 练习4. 甲、乙两人从,两地同时出发,相向而行.甲走到全程的的地方与乙相遇.已知甲每小时走千米,乙每小时走全程的.求,之间的路程.‎ 【分析】 相同的时间内,甲、乙路程之比为,因此甲、乙的速度比也为,所以乙的速度为千米/时.两地之间的路程为:千米. ‎ ‎ ‎