• 3.27 MB
  • 2021-05-10 发布

中考压轴题之一因动点问题产生的相似三角形问题

  • 22页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎1.1 因动点产生的相似三角形问题 ‎ 例1 2012年苏州市中考第29题 如图1,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.‎ ‎(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);‎ ‎(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;‎ ‎(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.‎ 图1‎ 动感体验 请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻.双击按钮“第(3)题”,拖动点B,可以体验到,存在∠OQA=∠B的时刻,也存在∠OQ′A=∠B的时刻.‎ 思路点拨 ‎1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.‎ ‎2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.‎ ‎3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上.‎ 满分解答 ‎(1)B的坐标为(b, 0),点C的坐标为(0, ).‎ ‎(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC.‎ 因此PD=PE.设点P的坐标为(x, x).‎ 如图3,联结OP.‎ 所以S四边形PCOB=S△PCO+S△PBO==2b.‎ 解得.所以点P的坐标为().‎ 图2 图3‎ ‎(3)由,得A(1, 0),OA=1.‎ ‎①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA.‎ 当,即时,△BQA∽△QOA.‎ 所以.解得.所以符合题意的点Q为().‎ ‎②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。‎ 因此△OCQ∽△QOA.‎ 当时,△BQA∽△QOA.此时∠OQB=90°.‎ 所以C、Q、B三点共线.因此,即.解得.此时Q(1,4).‎ 图4 图5‎ 考点伸展 第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而∠QOA与∠QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况.‎ 这样,先根据△QOA与△QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B的位置.‎ 如图中,圆与直线x=1的另一个交点会不会是符合题意的点Q呢?‎ 如果符合题意的话,那么点B的位置距离点A很近,这与OB=4OC矛盾.‎ 例2 2012年黄冈市中考模拟第25题 如图1,已知抛物线的方程C1: (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.‎ ‎(1)若抛物线C1过点M(2, 2),求实数m的值;‎ ‎(2)在(1)的条件下,求△BCE的面积;‎ ‎(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;‎ ‎(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.‎ 图1‎ 动感体验 请打开几何画板文件名“12黄冈25”,拖动点C在x轴正半轴上运动,观察左图,可以体验到,EC与BF保持平行,但是∠BFC在无限远处也不等于45°.观察右图,可以体验到,∠CBF保持45°,存在∠BFC=∠BCE的时刻.‎ 思路点拨 ‎1.第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BH+EH最小.‎ ‎2.第(4)题的解题策略是:先分两种情况画直线BF,作∠CBF=∠EBC=45°,或者作BF//EC.再用含m的式子表示点F的坐标.然后根据夹角相等,两边对应成比例列关于m的方程.‎ 满分解答 ‎(1)将M(2, 2)代入,得.解得m=4.‎ ‎(2)当m=4时,.所以C(4, 0),E(0, 2).‎ 所以S△BCE=.‎ ‎(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小.‎ 设对称轴与x轴的交点为P,那么.‎ 因此.解得.所以点H的坐标为.‎ ‎(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.‎ 由于∠BCE=∠FBC,所以当,即时,△BCE∽△FBC.‎ 设点F的坐标为,由,得.‎ 解得x=m+2.所以F′(m+2, 0).‎ 由,得.所以.‎ 由,得.‎ 整理,得0=16.此方程无解.‎ 图2 图3 图4‎ ‎②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,‎ 由于∠EBC=∠CBF,所以,即时,△BCE∽△BFC.‎ 在Rt△BFF′中,由FF′=BF′,得.‎ 解得x=2m.所以F′.所以BF′=2m+2,.‎ 由,得.解得.‎ 综合①、②,符合题意的m为.‎ 考点伸展 第(4)题也可以这样求BF的长:在求得点F′、F的坐标后,根据两点间的距离公式求BF的长.‎ 例3 2011年上海市闸北区中考模拟第25题 直线分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.‎ ‎(1) 写出点A、B、C、D的坐标;‎ ‎(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;‎ ‎(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.‎ 图1‎ 动感体验 请打开几何画板文件名“11闸北25”, 拖动点Q在直线BG上运动, 可以体验到,‎ ‎△ABQ的两条直角边的比为1∶3共有四种情况,点B上、下各有两种.‎ 思路点拨 ‎1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.‎ ‎2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.‎ ‎3.第(3)题判断∠ABQ=90°是解题的前提.‎ ‎4.△ABQ与△COD相似,按照直角边的比分两种情况,每种情况又按照点Q与点B的位置关系分上下两种情形,点Q共有4个.‎ 满分解答 ‎(1)A(3,0),B(0,1),C(0,3),D(-1,0).‎ ‎(2)因为抛物线y=ax2+bx+c经过A(3,0)、C(0,3)、D(-1,0) 三点,所以 解得 ‎ 所以抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,顶点G的坐标为(1,4).‎ ‎(3)如图2,直线BG的解析式为y=3x+1,直线CD的解析式为y=3x+3,因此 CD//BG.‎ 因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB⊥CD.因此AB⊥BG,即∠ABQ=90°.‎ 因为点Q在直线BG上,设点Q的坐标为(x,3x+1),那么.‎ Rt△COD的两条直角边的比为1∶3,如果Rt△ABQ与Rt△COD相似,存在两种情况:‎ ‎①当时,.解得.所以,.‎ ‎②当时,.解得.所以,. ‎ 图2 图3‎ 考点伸展 第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB⊥BG;二是.‎ 我们换个思路解答第(3)题:‎ 如图3,作GH⊥y轴,QN⊥y轴,垂足分别为H、N.‎ 通过证明△AOB≌△BHG,根据全等三角形的对应角相等,可以证明∠ABG=90°.‎ 在Rt△BGH中,,.‎ ‎①当时,.‎ 在Rt△BQN中,,.‎ 当Q在B上方时,;当Q在B下方时,.‎ ‎②当时,.同理得到,.‎ 例4 2011年上海市杨浦区中考模拟第24题 Rt△ABC在直角坐标系内的位置如图1所示,反比例函数在第一象限内的图象与BC边交于点D(4,m),与AB边交于点E(2,n),△BDE的面积为2.‎ ‎(1)求m与n的数量关系;‎ ‎(2)当tan∠A=时,求反比例函数的解析式和直线AB的表达式;‎ ‎(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果△AEO与△EFP 相似,求点P的坐标.‎ 图1‎ 动感体验 请打开几何画板文件名“11杨浦24”,拖动点A在x轴上运动,可以体验到,直线AB保持斜率不变,n始终等于m的2倍,双击按钮“面积BDE=2”,可以看到,点E正好在BD的垂直平分线上,FD//x轴.拖动点P在射线FD上运动,可以体验到,△AEO与△EFP 相似存在两种情况.‎ 思路点拨 ‎1.探求m与n的数量关系,用m表示点B、D、E的坐标,是解题的突破口.‎ ‎2.第(2)题留给第(3)题的隐含条件是FD//x轴.‎ ‎3.如果△AEO与△EFP 相似,因为夹角相等,根据对应边成比例,分两种情况.‎ 满分解答 ‎(1)如图1,因为点D(4,m)、E(2,n)在反比例函数的图象上,所以 整理,得n=2m.‎ ‎(2)如图2,过点E作EH⊥BC,垂足为H.在Rt△BEH中,tan∠BEH=tan∠A=,EH=2,所以BH=1.因此D(4,m),E(2,2m),B(4,2m+1).‎ 已知△BDE的面积为2,所以.解得m=1.因此D(4,1),E(2,2),B(4,3).‎ 因为点D(4,1)在反比例函数的图象上,所以k=4.因此反比例函数的解析式为.‎ 设直线AB的解析式为y=kx+b,代入B(4,3)、E(2,2),得 解得,.‎ 因此直线AB的函数解析式为.‎ 图2 图3 图4‎ ‎(3)如图3,因为直线与y轴交于点F(0,1),点D的坐标为(4,1),所以FD// x轴,∠EFP=∠EAO.因此△AEO与△EFP 相似存在两种情况:‎ ‎①如图3,当时,.解得FP=1.此时点P的坐标为(1,1).‎ ‎②如图4,当时,.解得FP=5.此时点P的坐标为(5,1).‎ 考点伸展 本题的题设部分有条件“Rt△ABC在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:‎ 第(1)题的结论m与n的数量关系不变.第(2)题反比例函数的解析式为,直线AB为.第(3)题FD不再与x轴平行,△AEO与△EFP 也不可能相似.‎ 图5‎ 例5 2010年义乌市中考第24题 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).‎ ‎(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;‎ ‎(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;‎ ‎(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.‎ ‎ ‎ 图1 图2‎ 动感体验 请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图象,可以体验到,x2-x1随S的增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果∠GAF=∠GQE,那么△GAF与△GQE相似.‎ 思路点拨 ‎1.第(2)题用含S的代数式表示x2-x1,我们反其道而行之,用x1,x2表示S.再注意平移过程中梯形的高保持不变,即y2-y1=3.通过代数变形就可以了.‎ ‎2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.‎ ‎3.第(3)题的示意图,不变的关系是:直线AB与x轴的夹角不变,直线AB与抛物线的对称轴的夹角不变.变化的直线PQ的斜率,因此假设直线PQ与AB的交点G在x轴的下方,或者假设交点G在x轴的上方.‎ 满分解答 ‎(1)抛物线的对称轴为直线,解析式为,顶点为M(1,).‎ ‎(2) 梯形O1A1B1C1的面积,由此得到.由于,所以.整理,得.因此得到.‎ 当S=36时, 解得 此时点A1的坐标为(6,3).‎ ‎(3)设直线AB与PQ交于点G,直线AB与抛物线的对称轴交于点E,直线PQ与x轴交于点F,那么要探求相似的△GAF与△GQE,有一个公共角∠G.‎ 在△GEQ中,∠GEQ是直线AB与抛物线对称轴的夹角,为定值.‎ 在△GAF中,∠GAF是直线AB与x轴的夹角,也为定值,而且∠GEQ≠∠GAF.‎ 因此只存在∠GQE=∠GAF的可能,△GQE∽△GAF.这时∠GAF=∠GQE=∠PQD.‎ 由于,,所以.解得.‎ ‎ ‎ 图3 图4‎ 考点伸展 第(3)题是否存在点G在x轴上方的情况?如图4,假如存在,说理过程相同,求得的t的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.‎ 例6 2010年上海市宝山区中考模拟第24题 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线上.‎ ‎(1)求m、n;‎ ‎(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;‎ ‎(3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.‎ 图1 ‎ 动感体验 请打开几何画板文件名“10宝山24”,拖动点A′向右平移,可以体验到,平移5个单位后,四边形A A′B′B为菱形.再拖动点D在x轴上运动,可以体验到,△B′CD与△ABC相似有两种情况.‎ 思路点拨 ‎1.点A与点B的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B′ 的坐标、AC和B′C的长.‎ ‎2.抛物线左右平移,变化的是对称轴,开口和形状都不变.‎ ‎3.探求△ABC与△B′CD相似,根据菱形的性质,∠BAC=∠CB′D,因此按照夹角的两边对应成比例,分两种情况讨论.‎ 满分解答 ‎(1) 因为点A (-2,4) 和点B (1,0)都在抛物线上,所以 解得,.‎ ‎(2)如图2,由点A (-2,4) 和点B (1,0),可得AB=5.因为四边形A A′B′B为菱形,所以A A′=B′B= AB=5.因为,所以原抛物线的对称轴x=-1向右平移5个单位后,对应的直线为x=4.‎ 因此平移后的抛物线的解析式为.‎ 图2‎ ‎(3) 由点A (-2,4) 和点B′ (6,0),可得A B′=.‎ 如图2,由AM//CN,可得,即.解得.所以.根据菱形的性质,在△ABC与△B′CD中,∠BAC=∠CB′D.‎ ‎①如图3,当时,,解得.此时OD=3,点D的坐标为(3,0).‎ ‎②如图4,当时,,解得.此时OD=,点D的坐标为(,0).‎ ‎ ‎ 图3 图4‎ 考点伸展 在本题情境下,我们还可以探求△B′CD与△AB B′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.‎ 我们也可以讨论△B′CD与△CB B′相似,这两个三角形有一组公共角∠B,根据对应边成比例,分两种情况计算.‎ 例7 2009年临沂市中考第26题 如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.‎ ‎(1)求此抛物线的解析式;‎ ‎(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;‎ ‎(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.‎ ‎,‎ 图1‎ 动感体验 ‎ 请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,△PAM的形状在变化,分别双击按钮“P在B左侧”、“ P在x轴上方”和“P在A右侧”,可以显示△PAM与△OAC相似的三个情景.‎ 双击按钮“第(3)题”, 拖动点D在x轴上方的抛物线上运动,观察△DCA的形状和面积随D变化的图象,可以体验到,E是AC的中点时,△DCA的面积最大.‎ 思路点拨 ‎1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.‎ ‎2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长.‎ ‎3.按照两条直角边对应成比例,分两种情况列方程.‎ ‎4.把△DCA可以分割为共底的两个三角形,高的和等于OA.‎ 满分解答 ‎ ‎(1)因为抛物线与x轴交于A(4,0)、B(1,0)两点,设抛物线的解析式为,代入点C的 坐标(0,-2),解得.所以抛物线的解析式为.‎ ‎(2)设点P的坐标为.‎ ‎①如图2,当点P在x轴上方时,1<x<4,,.‎ 如果,那么.解得不合题意.‎ 如果,那么.解得.‎ 此时点P的坐标为(2,1).‎ ‎②如图3,当点P在点A的右侧时,x>4,,.‎ 解方程,得.此时点P的坐标为.‎ 解方程,得不合题意.‎ ‎③如图4,当点P在点B的左侧时,x<1,,.‎ 解方程,得.此时点P的坐标为.‎ 解方程,得.此时点P与点O重合,不合题意.‎ 综上所述,符合条件的 点P的坐标为(2,1)或或.‎ ‎ ‎ 图2 图3 图4‎ ‎(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为.‎ 设点D的横坐标为m,那么点D的坐标为,点E的坐标为.所以.‎ 因此.‎ 当时,△DCA的面积最大,此时点D的坐标为(2,1).‎ ‎ ‎ 图5 图6‎ 考点伸展 第(3)题也可以这样解:‎ 如图6,过D点构造矩形OAMN,那么△DCA的面积等于直角梯形CAMN的面积减去△CDN和△ADM的面积.‎ 设点D的横坐标为(m,n),那么 ‎.‎ 由于,所以.‎ 例8 2009年上海市闸北区中考模拟第25题 如图1,△ABC中,AB=5,AC=3,cosA=.D为射线BA上的点(点D不与点B重合),作DE//BC交射线CA于点E..‎ ‎(1) 若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域;‎ ‎(2) 当分别以线段BD,CE为直径的两圆相切时,求DE的长度;‎ ‎(3) 当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由.‎ ‎ ‎ 图1 备用图 备用图 动感体验 ‎ 请打开几何画板文件名“09闸北25”,拖动点D可以在射线BA上运动.双击按钮“第(2)题”,拖动点D可以体验到两圆可以外切一次,内切两次.‎ 双击按钮“第(3)题”,再分别双击按钮“DE为腰”和“DE为底边”,可以体验到,△DEF为等腰三角形.‎ 思路点拨 ‎1.先解读背景图,△ABC是等腰三角形,那么第(3)题中符合条件的△DEF也是等腰三角形.‎ ‎2.用含有x的式子表示BD、DE、MN是解答第(2)题的先决条件,注意点E的位置不同,DE、MN表示的形式分两种情况.‎ ‎3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.‎ ‎4.第(3)题按照DE为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题.‎ 满分解答 ‎ ‎(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=,所以AH==AC.所以BH垂直平分AC,△ABC 为等腰三角形,AB=CB=5. ‎ 因为DE//BC,所以,即.于是得到,().‎ ‎(2)如图3,图4,因为DE//BC,所以,,即,.因此,圆心距.‎ ‎ ‎ 图2 图3 图4‎ 在⊙M中,,在⊙N中,.‎ ‎①当两圆外切时,.解得或者.‎ 如图5,符合题意的解为,此时.‎ ‎②当两圆内切时,.‎ 当x<6时,解得,如图6,此时E在CA的延长线上,;‎ 当x>6时,解得,如图7,此时E在CA的延长线上,.‎ ‎ ‎ 图5 图6 图7‎ ‎(3)因为△ABC是等腰三角形,因此当△ABC与△DEF相似时,△DEF也是等腰三角形.‎ 如图8,当D、E、F为△ABC的三边的中点时,DE为等腰三角形DEF的腰,符合题意,此时BF=2.5.根据对称性,当F在BC边上的高的垂足时,也符合题意,此时BF=4.1.‎ 如图9,当DE为等腰三角形DEF的底边时,四边形DECF是平行四边形,此时.‎ ‎ ‎ 图8 图9 图10 图11‎ 考点伸展 第(3)题的情景是一道典型题,如图10,如图11,AH是△ABC的高,D、E、F为△ABC的三边的中点,那么四边形DEHF是等腰梯形.‎