• 367.00 KB
  • 2021-05-10 发布

中考数学模拟试题及答案8

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2011年中考模拟题 数 学 试 卷(八)‎ ‎*考试时间120分钟 试卷满分120分 一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.若,则下列各式中一定成立的是( )‎ A.    B.   C.     D. ‎ ‎2.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是( )‎ A B O ‎·‎ C A.AB=CD B.≤ C. D.≥ ‎ ‎3.如图,两个同心圆的半径分别为‎3cm和‎5cm,弦AB与小圆相切于点 C,则AB的长为(  )‎ ‎ A.‎4cm B.‎‎5cm ‎ C.‎6cm D.‎‎8cm ‎4.下列运算中,正确的是( )‎ P O B A A. B.‎ ‎ C. D.‎ ‎5.如图,四个边长为1的小正方形拼成一个大正方形,A、‎ B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,‎ 且位于右上方的小正方形内,则∠APB等于( )‎ A.30° B.45° C.60° D.90° ‎ x y O A B ‎6.如图,在直角坐标系中,点是轴正半轴上的一个定点,点是 双曲线()上的一个动点,当点的横坐标逐渐增大时,‎ 的面积将会 ‎ A.逐渐增大 B.不变 C.逐渐减小 D.先增大后减小 ‎7.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是(  )‎ A. 甲 B. 乙 C. 丙 D.不能确定 A B C D ‎150°‎ h ‎8.如图是某商场一楼与二楼之间的手扶电梯示意图.其 中AB、CD分别表示一楼、二楼地面的水平线,‎ ‎∠ABC=150°,BC的长是‎8 m,则乘电梯从点B到点 C上升的高度h是( )‎ A. m B.‎‎4 m C. m D.‎‎8 m ‎9.在同一直角坐标系中,函数和函数(是常数,且)的图象可能是(  )‎ ‎10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方 体,得到一个如图5所示的零件,则这个零件的表面积是( )‎ A.20 B.22 ‎ C.24 D.26 ‎ 取相反数 ‎×2‎ ‎+4‎ 输入x 输出y ‎11.如图所示的计算程序中,y与x之间的函数关系所对应的图 象应为( )‎ O y x ‎-2‎ ‎- 4‎ A D C B O ‎4‎ ‎2‎ y O ‎2‎ ‎- 4‎ y x O ‎4‎ ‎- 2‎ y x x x ‎1‎ y ‎2‎ ‎-1‎ ‎1‎ O ‎-1‎ ‎12.小强从如图所示的二次函数的图象中,观察得出了下面五条信息:‎ ‎(1);(2);(3);(4);(5).‎ 你认为其中正确信息的个数有( )‎ A.2个 B.3个   C.4个   D.5个 二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)‎ ‎13.比较大小:-6 -8.(填“<”、“=”或“>”)‎ ‎14.矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为 平方单位.‎ ‎15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表: ‎ 体温(℃)‎ ‎36.1‎ ‎36.2‎ ‎36.3‎ ‎36.4‎ ‎36.5‎ ‎36.6‎ ‎36.7‎ 次 数 ‎2‎ ‎3‎ ‎4‎ ‎6‎ ‎3‎ ‎1‎ ‎2‎ 则这些体温的中位数是 ℃.‎ ‎16.观察下列等式:‎ ‎;‎ ‎;‎ ‎;‎ ‎…………‎ 则第(是正整数)个等式为________.‎ A B C D E A′‎ ‎17.如图,等边△ABC的边长为‎1 cm,D、E分别是AB、‎ AC上的点,将△ADE沿直线DE折叠,点A落在点 ‎ 处,且点在△ABC外部,则阴影部分图形的周长 为 cm.‎ ‎18.如图,矩形ABCD中,由8个面积均为1的小正方形组成 的L型模板如图放置,则矩形ABCD的周长为 _.‎ 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)‎ ‎19.(本小题满分8分)‎ 先化简,再求值:‎ 其中 ‎20.(本小题满分8分)‎ 某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“‎8”‎是一等奖,数字之和为“‎6”‎是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.‎ 电视机月销量扇形统计图 第一个月 ‎15%‎ 第二个月 ‎30%‎ 第三个月 ‎25%‎ 第四个月 图11-1‎ ‎21.(本小题满分9分)‎ 某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.‎ 时间/月 ‎0‎ ‎10‎ ‎20‎ ‎30‎ ‎50‎ ‎40‎ ‎60‎ 图11-2‎ 销量/台 第一 第二 第三 第四 电视机月销量折线统计图 A品牌 B品牌 ‎80‎ ‎70‎ ‎(1)第四个月销量占总销量的百分比是 ;‎ ‎(2)在图11-2中补全表示B品牌电视机月销量的 折线;‎ ‎(3)为跟踪调查电视机的使用情况,从该商店第 四个月售出的电视机中,随机抽取一台,求 抽到B品牌电视机的概率;‎ ‎(4)经计算,两个品牌电视机月销量的平均水平相 同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.‎ ‎22.(本小题满分9分)‎ 某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段、分别表示父、子俩送票、取票过程中,离体育馆的路程(米)与所用时间(分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):‎ S(米)‎ t(分)‎ B O O ‎3 600‎ ‎15‎ A ‎(1)求点的坐标和所在直线的函数关系式;‎ ‎(2)小明能否在比赛开始前到达体育馆?‎ ‎23.(本小题满分10分)‎ 已知:如图,在△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.‎ ‎(1)求证:BC=CD;‎ ‎(2)求证:∠ADE=∠ABD;‎ ‎(3)设AD=2,AE=1,求⊙O直径的长.‎ ‎24.(本小题满分10分)‎ 图1‎ A H C(M)‎ D E B F G(N)‎ G 图2‎ A H C D E B F N M A H C D E 图3‎ B F G M N 在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.‎ ‎(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,‎ 求证:FM = MH,FM⊥MH;‎ ‎(2)将图-1中的CE绕点C顺时针旋转一个锐角,得到图2,‎ 求证:△FMH是等腰直角三角形;‎ ‎(3)将图2中的CE缩短到图3的情况,‎ ‎△FMH还是等腰直角三角形吗?(不必 说明理由)‎ ‎25.(本小题满分12分)‎ 如图,某公路隧道横截面为抛物线,其最大高度为‎6米,底部宽度OM为‎12米. 现以O点为原点,OM所在直线为x轴建立 直角坐标系.‎ ‎(1)直接写出点M及抛物线顶点P的坐标;‎ ‎(2)求这条抛物线的解析式;‎ ‎(3)若要搭建一个矩形“支撑架”AD- DC- CB,‎ 使C、D点在抛物线上,A、B点在地面OM上,‎ ‎26.(本小题满分12分)‎ 如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F. FE与DC的延长线相交于点G,连结DE,DF.‎ ‎(1) 求证:ΔBEF ∽ΔCEG.‎ ‎(2) 当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由.‎ ‎(3)设BE=x,△DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少? ‎ ‎2011年中考模拟题(八)‎ 数学试题参考答案及评分标准 一、选择题 题 号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 答 案 A D D C B C C B D C D C 二、填空题 ‎13.>; 14.64; 15.36.4; 16.; 17.3; 18..‎ 三、解答题 ‎19.解:÷= 3分 ‎ =x+4 5分 当x =3时,原式=3+4‎ ‎ =7 8分 ‎20.解:抽中一等奖的概率为, 3分 抽中二等奖的概率为, 5分 抽中三等奖的概率为. 8分 ‎ ‎ 时间/月 ‎0‎ ‎10‎ ‎20‎ ‎30‎ ‎50‎ ‎40‎ ‎60‎ 图1‎ 销量/台 第一 第二 第三 第四 电视机月销量折线统计图 A品牌 B品牌 ‎80‎ ‎70‎ ‎ ‎ ‎21.解:(1)30%; ‎ ‎(2)如图1;‎ ‎(3);‎ ‎(4)由于月销量的平均水平相同,从折线的走势看,‎ A品牌的月销量呈下降趋势,而B品牌的月销量呈上升趋势. ‎ 所以该商店应经销B品牌电视机.‎ S(米)‎ t(分)‎ B O O ‎3 600‎ ‎15‎ ‎22.解:(1)解法一:‎ 从图象可以看出:父子俩从出发到相遇时花费了15分钟 1分 设小明步行的速度为x米/分,则小明父亲骑车的速度为3x米/分 依题意得:15x+45x=3600. 2分 解得:x=60.‎ 所以两人相遇处离体育馆的距离为 ‎60×15=‎900米.‎ 所以点B的坐标为(15,900). 3分 设直线AB的函数关系式为s=kt+b(k≠0). 4分 由题意,直线AB经过点A(0,3600)、B(15,900)得:‎ 解之,得 ‎∴直线AB的函数关系式为:. 6分 解法二:‎ 从图象可以看出:父子俩从出发到相遇花费了15分钟. 1分 设父子俩相遇时,小明走过的路程为x米.‎ 依题意得: 2分 解得x=900,所以点B的坐标为(15,900) 3分 以下同解法一.‎ ‎(2)解法一:小明取票后,赶往体育馆的时间为: 7分 小明取票花费的时间为:15+5=20分钟.‎ ‎∵20<25‎ ‎∴小明能在比赛开始前到达体育馆. 9分 解法二:在中,令S=0,得.‎ ‎ 解得:t=20.‎ 即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟. ∵20<25,∴小明能在比赛开始前到达体育馆. 9分 ‎23.解:(1)∵∠ABC=90°,‎ ‎∴OB⊥BC. 1分 ‎∵OB是⊙O的半径,‎ ‎∴CB为⊙O的切线. 2分 又∵CD切⊙O于点D,‎ ‎∴BC=CD; 3分 ‎(2)∵BE是⊙O的直径,‎ ‎∴∠BDE=90°.‎ ‎∴∠ADE+∠CDB =90°. 4分 又∵∠ABC=90°,‎ ‎∴∠ABD+∠CBD=90°. 5分 由(1)得BC=CD,∴∠CDB =∠CBD.‎ ‎∴∠ADE=∠ABD; 6分 ‎(3)由(2)得,∠ADE=∠ABD,∠A=∠A.‎ ‎∴△ADE∽△ABD. 7分 ‎∴=. 8分 ‎∴=,∴BE=3, 9分 ‎∴所求⊙O的直径长为3. 10分 ‎24.(1)证明:∵四边形BCGF和CDHN都是正方形,‎ 又∵点N与点G重合,点M与点C重合,‎ ‎∴FB = BM = MG = MD = DH,∠FBM =∠MDH = 90°.‎ ‎∴△FBM ≌ △MDH.‎ ‎∴FM = MH. ‎ ‎∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM⊥HM.‎ 图2‎ A H C D E B F G N M P ‎(2)证明:连接MB、MD,如图2,设FM与AC交于点P.‎ ‎∵B、D、M分别是AC、CE、AE的中点,‎ ‎∴MD∥BC,且MD = BC = BF;MB∥CD,‎ 且MB=CD=DH.‎ ‎∴四边形BCDM是平行四边形.‎ ‎∴ ∠CBM =∠CDM.‎ 又∵∠FBP =∠HDC,∴∠FBM =∠MDH.‎ ‎∴△FBM ≌ △MDH.‎ ‎∴FM = MH, ‎ 且∠MFB =∠HMD.‎ ‎∴∠FMH =∠FMD-∠HMD =∠APM-∠MFB =∠FBP = 90°.‎ ‎∴△FMH是等腰直角三角形. ‎ ‎(3)是.‎ ‎25.解:(1) M(12,0),P(6,6). 2分 ‎(2) 设抛物线解析式为:. 3分 ‎∵抛物线经过点(0,0),‎ ‎∴,即 4分 ‎∴抛物线解析式为:‎ ‎ . 5分(3) 设A(m,0),则 B(12-m,0),,. 7分 ‎∴“支撑架”总长AD+DC+CB = ‎ ‎=. 10分 ‎ ∵ 此二次函数的图象开口向下.‎ ‎∴ 当m = ‎3米时,AD+DC+CB有最大值为‎15米. 12分 ‎ ‎ ‎26. (1) 因为四边形ABCD是平行四边形, 所以 1分 ‎ 所以 所以 3分 ‎(2)的周长之和为定值. 4分 理由一:‎ 过点C作FG的平行线交直线AB于H ,‎ 因为GF⊥AB,所以四边形FHCG为矩形.所以 FH=CG,FG=CH 因此,的周长之和等于BC+CH+BH ‎ 由 BC=10,AB=5,AM=4,可得CH=8,BH=6,‎ 所以BC+CH+BH=24 6分 理由二:‎ 由AB=5,AM=4,可知 ‎ 在Rt△BEF与Rt△GCE中,有:‎ ‎,‎ 所以,△BEF的周长是, △ECG的周长是 又BE+CE=10,因此的周长之和是24. 6分 ‎(3)设BE=x,则 所以 8分 配方得:. ‎ 所以,当时,y有最大值. 10分 最大值为. 12分 ‎ ‎