- 75.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3讲 四边形与多边形
第1课时 多边形与平行四边形
一级训练
1.(2011年广东)正八边形的每个内角为( )
A.120° B.135° C.140° D.144°
2.用正方形一种图形进行平面镶嵌时,在它的一个顶点周围的正方形的个数是( )
A.3 B.4 C.5 D.6
3.(2011年湖南邵阳)如图4-3-6,▱ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是( )
A.AC⊥BD B.AB=CD C.BO=OD D.∠BAD=∠BCD
图4-3-6 图4-3-7 图4-3-8
4.如图4-3-7,在▱ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为( )
A.3 B.6 C.12 D.24
5.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )
A.5 B.6 C.7 D.8
6.在▱ABCD中,∠A∶∠B∶∠C∶∠D的比值是( )
A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.2∶1∶2∶1
7.(2012年广西南宁)如图4-3-8,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )
A.2 cm<OA<5 cm B.2 cm<OA<8 cm C.1 cm<OA<4 cm D.3 cm<OA<8 cm
8.(2011年江苏泰州)在四边形ABCD中,对角线AC,BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( )
A.1组 B.2组 C.3组 D.4组
9.(2011年四川广安)若凸n边形的内角和为1 260°,则从一个顶点出发引的对角线条数是__________.
10.在下列四组多边形地板砖中: ①正三角形与正方形; ②正三角形与正六边形; ③正六边形与正方形; ④正八边形与正方形. 将每组中的两种多边形结合, 能密铺地面的是__________(填正确序号).
11.(2011年四川宜宾)如图4-3-9,平行四边形ABCD的对角线AC,BD交于点O,E,F在AC上,G,H在BD上,AF=CE,BH=DG.
求证:GF∥HE.
图4-3-9
12.如图4-3-10,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.
图4-3-10
二级训练
13.(2009年广东茂名)如图4-3-11,杨伯家小院子的四棵小树E,F,G,H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH种上小草,则这块草地的形状是( )
A.平行四边形 B.矩形 C.正方形 D.菱形
图4-3-11 图4-3-12 图4-3-13
14.(2011年浙江金华)如图4-3-12,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是________.
15.(2010年广东)如图4-3-13,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
三级训练
16.如图4-3-14,在五边形ABCDE中,∠BAE=120°, ∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为( )
A. 100° B.110° C. 120° D. 130°
图4-3-14
17.(2012年山东威海)(1)如图4-3-15
(1)□ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.
求证:AE=CF.
(2)如图4-3-15(2),将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.
图4-3-15
参考答案
1.B 2.B 3.A 4.C 5.D 6.D 7.C
8.C 9.6
10.①②④ 解析:①正三角形内角为60°,正方形内角为90°,可以由3个正三角形和2个正方形可以密铺;②正六边形内角为120°,可由2个正三角形2个正六边形密铺;③正六边形和正方形无法密铺;④正八边形内角为135°,正方形内角为90°,2个正八边形和1个正方形可以密铺.故选D.
11.证明:∵在平行四边形ABCD中,OA=OC,
又已知AF=CE,
∴AF-OA=CE-OC.∴OF=OE.
同理,得OG=OH.
∴四边形EGFH是平行四边形.
∴GF∥HE.
12.解:猜想:BE∥DF,BE=DF.
证法一:如图D13.
图D13
∵四边形ABCD是平行四边形,
∴BC=AD,∠1=∠2,
又∵CE=AF,
∴△BCE≌DAF.
∴BE=DF,∠3=∠4.
∴BE∥DF.
证法二:如图D14.
图D14
连接BD,交AC于点O,
连接DE,BF,
∵四边形ABCD是平行四边形,
∴BO=OD,AO=CO.
又∵AF=CE,
∴AE=CF.
∴EO=FO.
∴四边形BEDF是平行四边形.
∴BE綊DF.
13.A
14.2 提示:△EFD的面积与△EHD的面积相等.
15.证明:(1)∵在Rt△ABC中,
∠BAC=30°,∴AB=2BC.
又△ABE是等边三角形,EF⊥AB,
∴∠AEF=30°.
∴AE=2AF,且AB=2AF.∴AF=CB.
而∠ACB=∠AFE=90°,
∴△AFE≌△BCA.∴AC=EF.
(2)由(1)知道AC=EF,而△ACD是等边三角形,
∴∠DAC=60°.∴EF=AC=AD,且AD⊥AB.而EF⊥AB,
∴EF∥AD.∴四边形ADFE是平行四边形.
16.C
17.证明:(1)如图D15,∵四边形ABCD是平行四边形,
图D15
∴AD∥BC,OA=OC.
∴∠1=∠2.
在△AOE和△COF中,
∴△AOE≌△COF(ASA).
∴AE=CF.
(2)如图D16,∵四边形ABCD是平行四边形,
图D16
∴∠A=∠C,∠B=∠D.
由(1),得AE=CF.
由折叠的性质,可得AE=A1E,∠A1=∠A,∠B1=∠B.
∴A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D.
又∵∠1=∠2,
∴∠3=∠4.
∵∠5=∠3,∠4=∠6,
∴∠5=∠6.
在△AIE与△CGF中,
∴△AIE≌△CGF(AAS).
∴EI=FG.