- 321.70 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018-2019学年初三中考第一次模拟考试数学试卷
一.填空题(共12小题,满分24分,每小题2分)
1.如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是 .
2.若am=2,an=3,则am﹣n的值为 .
3.若a,b都是实数,b=+﹣2,则ab的值为 .
4.如图,AB∥EF,设∠C=90°,那么x,y,z的关系是 .
5.因式分解:a3﹣ab2= .
6.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是 .
7.已知关于x的一元二次方程x2+bx+1=0有两个相等的实数根,则b的值为 .
8.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为 .
9.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:
(1)∠DCF+∠D=90°;(2)∠AEF+∠ECF=90°;(3)S△BEC=2S△CEF;(4)若∠B=80°,则∠AEF=50°.
其中一定成立的是 (把所有正确结论的序号都填在横线上)
10.T1、T2分别为⊙O的内接正六边形和外切正六边形.设T1的半径r,T1、T2的边长分别为a、b
,T1、T2的面积分别为S1、S2.下列结论:①r:a=1:1;②r:b=;③a:b=1:;④S1:S2=3:4.其中正确的有 .(填序号)
11.如图,⊙O的半径为,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有 个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是 .
12.如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为 .
二.选择题(共5小题,满分15分,每小题3分)
13.国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为( )
A.13.75×106 B.13.75×105 C.1.375×108 D.1.375×109
14.如图,几何体的左视图是( )
A. B.
C. D.
15.已知关于x的方程2x﹣a=x﹣1的解是非负数,则a的取值范围为( )
A.a≥1 B.a>1 C.a≤1 D.a<1
16.如图,已知公路l上A、B两点之间的距离为50m,小明要测量点C与河对岸边公路l的距离,测得∠ACB=∠CAB=30°.点C到公路l的距离为( )
A.25m B. m C.25m D.(25+25)m
17.如图,将长16cm,宽8cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为( )cm.
A.6 B.4 C.10 D.2
三.解答题(共11小题,满分91分)
18.(8分)(1)计算:;
(2)化简:.
19.(10分)(1)解方程2(x﹣3)=4x﹣5.
(2)解不等式组
20.(6分)如图,在△ABC中,点D是AC的中点,DE∥BC交AB于点E,DF∥AB交BC于点F,说明△ADE与△DCF全等的理由.
21.(6分)不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)
(1)两次取的小球都是红球的概率;
(2)两次取的小球是一红一白的概率.
22.(14分)某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:
九年级抽取部分学生成绩的频率分布表
成绩x/分
频数
频率
第1段
x<60
2
0.04
第2段
60≤x<70
6
0.12
第3段
70≤x<80
9
b
第4段
80≤x<90
a
0.36
第5段
90≤x≤100
15
0.30
请根据所给信息,解答下列问题:
(1)a= ,b= ;
(2)请补全频数分布直方图;
(3)样本中,抽取的部分学生成绩的中位数落在第 段;
(4)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?
23.(8分)如图,∠ABC=90°,=,BC=6,AD=DC,∠ADC=60°.
(1)求AC长.
(2)求△ADC的面积.
24.(7分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
(1)第一次购书的进价是多少元?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
25.(7分)如图,AB是⊙O的直径,=,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.
(1)求证:直线BF是⊙O的切线;
(2)若OB=2,求BD的长.
26.(7分)如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;
(1)求反比例函数的表达式;
(2)根据图象直接写出﹣x>的解集;
(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
27.(8分)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a的最高点的纵坐标是2.
(1)求抛物线的对称轴及抛物线的表达式;
(2)将抛物线在1≤x≤4之间的部分记为图象G1,将图象G1沿直线x=1翻折,翻折后的图象记为G2,图象G1和G2组成图象G.过(0,b)作与y轴垂直的直线l,当直线l和图象G只有两个公共点时,将这两个公共点分别记为P1(x1,y1),P(x2,y2),求b的取值范围和x1+x2的值.
28.(10分)问题发现.
(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为 .
(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.
(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.
参考答案
1.﹣6.
2..
3.4.
4.90°
解:过C作CM∥AB,延长CD交EF于N,
则∠CDE=∠E+∠CNE,
即∠CNE=y﹣z
∵CM∥AB,AB∥EF,
∴CM∥AB∥EF,
∴∠ABC=x=∠1,∠2=∠CNE,
∵∠BCD=90°,
∴∠1+∠2=90°,
∴x+y﹣z=90°,
∴z+90°=y+x,即x+y﹣z=90°.
5.a(a+b)(a﹣b).
6.85.
7.±2.
8..
9.(1)(2)(4)正确
解:(1)∵F是AD的中点,
∴AF=FD,
∵在▱ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,∠BCD+∠D=180°,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,
∴∠DCF+∠D=90°,
∴(1)正确;
(2)延长EF,交CD延长线于M,如图所示:
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴EF=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴CF=EM=EF,
∴∠FEC=∠ECF,
∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,
∴(2)正确;
(3)∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC<2S△EFC
∴(3)错误;
(4)∵∠B=80°,
∴∠BCE=90°﹣80°=10°,
∵AB∥CD,
∴∠BCD=180°﹣80°=100°,
∴∠BCF=∠BCD=50°,
∴∠FEC=∠ECF=50°﹣10°=40°,
∴∠AEF=90°﹣40°=50°,
∴(4)正确.
10.①②④
解:连接圆心O和T1的6个顶点可得6个全等的正三角形.
所以r:a=1:1;∴①正确;
连接圆心O和T2相邻的两个顶点,得以圆O半径为高的正三角形,
所以r:b=AO:BO=sin60°=:2;∴②正确;
a:b=:2;∴③错误;
T1:T2的边长比是:2,所以S1:S2=(a:b)2=3:4.∴④正确;
11..
12.(,0)
解:作点A关于x轴的对称点A′,连接A′B,则A′B与x轴的交点即为所求,
∵抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),
∴点B(3,3),
∴,
解得,,
∴y=x2﹣4x+6=(x﹣2)2+2,
∴点A的坐标为(2,2),
∴点A′的坐标为(2,﹣2),
设过点A′(2,﹣2)和点B(3,3)的直线解析式为y=mx+n,
,得,
∴直线A′B的函数解析式为y=5x﹣12,
令y=0,则0=5x﹣12得x=,
∴答案为:(,0).
13.D 14.A 15.A
16.C
解:如图,过点C作CD⊥直线l于点D,
∵∠ACB=∠CAB=30°,AB=50m,
∴AB=BC=50m,∠CBD=60°,
在Rt△BCD中,∵sin∠CBD=,
∴CD=BCsin∠CBD=50×=25(m),
17. B
解:连接AC,与EF交于O点,
∵E点在AB上,F在CD上,A、C点重合,EF是折痕,
∴AO=CO,EF⊥AC,
∵AB=16,BC=8,
∴AC=,
∴AO=,
∵∠EAO=∠CAB,∠AOE=∠B=90°,
∴△AOE∽△ABC,
∴OE:BC=AO:BA,即
∴OE=,
∴EF=2OE=.
18.解:(1)
=4+1+|1﹣2×|
=4+1+|1﹣|
=4+1+﹣1
=4+;
(2)
=
=
=.
19.解:(1)去括号2x﹣6=4x﹣5
移项,合并得﹣2x=1
化系数为1,x=﹣.
(2)
由①得x>﹣2,
由②得x≤2.
∴不等式组的解集为:﹣2<x≤2.
20.证明:∵点D是AC的中点,
∴AD=DC,
∵DE∥BC,
∴∠ADE=∠DCF,∠DFC=∠EDF,
∵DF∥AB,
∴∠AED=∠EDF,
∴∠AED=∠DFC,
在△ADE和△DCF中,
,
∴△ADE≌△DCF.
21.解:(1)根据题意,有
两次取的小球都是红球的概率为;
(2)由(1)可得,两次取的小球是一红一白的有4种;
∴其概率为.
22.解:(1)本次调查的总人数为2÷0.04=50,
则a=50×0.36=18、b=9÷50=0.18,
∴答案为:18、0.18;
(2)补全直方图如下右:
(3)∵共有50个数据,
∴其中位数是第25,26个数据的平均数,而第25,26个数据均落在第4组,
∴中位数落在第4组,
∴答案为:4.
(4)400×0.30=120,
答:估计该年级成绩为优的有120人.
23.
解:(1)∵∠ABC=90°,=,BC=6,
∴AB=AC,即AB2=AC2,BC2=36,
又∵AB2+BC2=AC2,
∴AC2+36=AC2,36=AC2,
∴AC=8,
(2)∵AD=DC,∠ADC=60°.
∴三角形ACD是等边三角形,
∴AD=DC=AC=8,
∴如图所示,过点D作三角形ACD的高于AC交于点E,
∴DE2=AD2﹣=64﹣=16×3,
∴DE=4,
∴S△ACD=×4×8=16.
24.
解:(1)设第一次购书的单价为x元,根据题意得:
+10=.
解得:x=5.
经检验,x=5是原方程的解,
答:第一次购书的进价是5元;
(2)第一次购书为1200÷5=240(本),
第二次购书为240+10=250(本),
第一次赚钱为240×(7﹣5)=480(元),
第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),
所以两次共赚钱480+40=520(元),
答:该老板两次售书总体上是赚钱了,共赚了520元.
25.
(1)证明:连接OC,
∵AB是⊙O的直径,=,
∴∠BOC=90°,
∵E是OB的中点,
∴OE=BE,
在△OCE和△BFE中,
∵,
∴△OCE≌△BFE(SAS),
∴∠OBF=∠COE=90°,
∴直线BF是⊙O的切线;
(2)解:∵OB=OC=2,
由(1)得:△OCE≌△BFE,
∴BF=OC=2,
∴AF===2,
∴S△ABF=,
4×2=2•BD,
∴BD=.
26.
解:(1)∵直线l1:y=﹣x经过点A,A点的纵坐标是2,
∴当y=2时,x=﹣4,
∴A(﹣4,2),
∵反比例函数y=的图象经过点A,
∴k=﹣4×2=﹣8,
∴反比例函数的表达式为y=﹣;
(2)∵直线l1:y=﹣x与反比例函数y=的图象交于A,B两点,
∴B(4,﹣2),
∴不等式﹣x>的解集为x<﹣4或0<x<4;
(3)如图,设平移后的直线l2与x轴交于点D,连接AD,BD,
∵CD∥AB,
∴△ABC的面积与△ABD的面积相等,
∵△ABC的面积为30,
∴S△AOD+S△BOD=30,即OD(|yA|+|yB|)=30,
∴×OD×4=30,
∴OD=15,
∴D(15,0),
设平移后的直线l2的函数表达式为y=﹣x+b,
把D(15,0)代入,可得0=﹣×15+b,
解得b=,
∴平移后的直线l2的函数表达式为y=﹣x+.
27.
解:(1)∵抛物线y=ax2﹣4ax+3a=a(x﹣2)2﹣a,
∴对称轴为直线x=2,
∵抛物线y=ax2﹣4ax+3a的最高点的纵坐标是2,
∴a=﹣2,
∴抛物线的表达式为y=﹣2(x﹣2)2+2=﹣2x2+8x﹣6;
(2)如图,由图象可知b=2或﹣6≤b<0,
由图象的对称性可得:x1+x2=2.
28.
解:(1)如图①,过点C作CD⊥AB于D,根据点到直线的距离垂线段最小,此时CD最小,
在Rt△ABC中,AC=3,BC=4,根据勾股定理得,AB=5,
∵AC×BC=AB×CD,
∴CD==,
∴答案为;
(2)如图②,作出点C关于BD的对称点E,
过点E作EN⊥BC于N,交BD于M,连接CM,此时CM+MN=EN最小;
∵四边形ABCD是矩形,
∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,
∵CE⊥BC,
∴BD×CF=BC×CD,
∴CF==,
由对称得,CE=2CF=,
在Rt△BCF中,cos∠BCF==,
∴sin∠BCF=,
在Rt△CEN中,EN=CEsin∠BCE==;
即:CM+MN的最小值为;
(3)如图3,
∵四边形ABCD是矩形,
∴CD=AB=3,AD=BC=4,∠ABC=∠D=90°,根据勾股定理得,AC=5,
∵AB=3,AE=2,
∴点F在BC上的任何位置时,点G始终在AC的下方,
设点G到AC的距离为h,
∵S四边形AGCD=S△ACD+S△ACG=AD×CD+AC×h=×4×3+×5×h=h+6,
∴要四边形AGCD的面积最小,即:h最小,
∵点G是以点E为圆心,BE=1为半径的圆上在矩形ABCD内部的一部分点,
∴EG⊥AC时,h最小,
由折叠知∠EGF=∠ABC=90°,
延长EG交AC于H,则EH⊥AC,
在Rt△ABC中,sin∠BAC==,
在Rt△AEH中,AE=2,sin∠BAC==,
∴EH=AE=,
∴h=EH﹣EG=﹣1=,
∴S四边形AGCD最小=h+6=×+6=,
过点F作FM⊥AC于M,
∵EH⊥FG,EH⊥AC,
∴四边形FGHM是矩形,
∴FM=GH=
∵∠FCM=∠ACB,∠CMF=CBA=90°,
∴△CMF∽△CBA,
∴,
∴,
∴CF=1
∴BF=BC﹣CF=4﹣1=3.