• 752.86 KB
  • 2021-05-10 发布

中考数学试题专题等腰三角形与勾股定理试题

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
N M A G C B A F C E B D A F C E B D ‎(图1)‎ ‎(图2)‎ ‎(图3)‎ O A F C E B D ‎(图4)‎ O O ‎【关键词】等边三角形 证明:如图1,为等边三角形 ‎∴‎ N M A G C B ‎(图1)‎ 同理:‎ 为等边三角形.‎ 在中,‎ 在中,‎ ‎(2):结论1成立.‎ A F C E B D ‎(图2)‎ O H 证明;方法一:如图2,连接 由= ‎ 作垂足为,‎ 则 方法二:如图3,过点作分别交于点,过点 作于点,‎ 是等边三角形 四边形是矩形 在中,‎ A F C E B D O M H G 在中,‎ 在中,‎ ‎ ‎ A F C E B D O M G N ‎(2)结论2成立.‎ 证明:方法一:如图4,过顶点依次作边的垂线围成由(1)得为等边三角形且 过点分别作于,于于点于点 由结论1得: ‎ 又 四边形为矩形 同理:,‎ 方法二:(同结论1方法二的辅助线)‎ A F C E B D ‎(图3)‎ O M H G 在中,‎ 在中,‎ 同理:‎ ‎=‎ ‎=‎ 由结论1得:‎ A F C E B D ‎(图5)‎ O 方法三:如图5,连接,根据勾股定理得:‎ ‎:‎ 整理得:‎ ‎ 12分 ‎20.(2009年南充)如图8,半圆的直径,点C在半圆上,.‎ ‎(1)求弦的长;‎ ‎(2)若P为AB的中点,交于点E,求的长.‎ P B C E A ‎【关键词】圆的性质,三角形相似的性质 ‎【答案】解:是半圆的直径,点在半圆上,‎ ‎.‎ 在中, ‎ ‎(2),‎ ‎.,‎ ‎.‎ 又,‎ ‎,‎ ‎.‎ ‎19.(2009年湖州)如图,在平面直角坐标系中,直线∶=分别与轴,轴相交于两点,点是轴的负半轴上的一个动点,以为圆心,3为半径作.‎ ‎(1)连结,若,试判断与轴的位置关系,并说明理由;‎ ‎(2)当为何值时,以与直线的两个交点和圆心为顶点的三角形是正三角形?‎ B A O x l y P A O x l y ‎(备用图)‎ ‎【关键词】直线与圆的位置关系,相切的判定,正三角形的性质,相似的性质 ‎【答案】‎ 第(1)题 B A O x l y P B A O x l y C E D P1‎ P2‎ 第(2)题 解:(1)与轴相切.‎ 直线与轴交于,与轴交于,‎ ‎,‎ 由题意,.‎ 在中,,‎ 等于的半径,与轴相切. ‎ ‎(2)设与直线交于两点,连结.‎ 当圆心在线段上时,作于.‎ 为正三角形,.‎ ‎,‎ 即,‎ ‎,‎ ‎.‎ 当圆心在线段延长线上时,同理可得,‎ ‎,‎ ‎ 当或时,以与直线的两个交点和圆心为顶点的三角形是正三角形.‎ ‎20.(2009年湖州)若P为所在平面上一点,且,则点叫做的费马点.‎ ‎(1)若点为锐角的费马点,且,则的值为________;‎ ‎(2)如图,在锐角外侧作等边′连结′.‎ 求证:′过的费马点,且′=.‎ A C B ‎【关键词】阅读理解题,等边三角形的性质,全等三角形的判定及性质,综合题 ‎【答案】(1)2. ‎ ‎(2)‎ A C B P E 证明:在上取点,使,‎ 连结,再在上截取,连结.‎ ‎,‎ 为正三角形,‎ ‎=,‎ 为正三角形,‎ ‎=,‎ ‎=,‎ ‎′,‎ ‎.‎ ‎,‎ ‎,‎ 为的费马点,‎ 过的费马点,且=+.‎ ‎21.(2009年温州)如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连结DE. ’‎ ‎ (1)当BD=3时,求线段DE的长;‎ ‎ (2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F.求证:△FAE是等腰三角形.‎ ‎【关键词】直角三角形、圆的性质,相似的判定,切线的性质,等腰三角形的判定 ‎【答案】解:(1)∵∠C=90°,AC=3,BC=4,‎ ‎∴AB=5,‎ ‎∵DB为直径,‎ ‎∴∠DEB=∠C=90°,‎ 又∵∠B=∠B ,∴△DBE∽△ABC ‎∴ 即 ‎∴DE=。‎ ‎(2)解法一:连结OE,‎ ‎∵EF为半圆O的切线,‎ ‎∴∠DEO+∠DEF=90°,‎ ‎∵∠AEF+∠DEF=90°,‎ ‎∴∠AEF=∠DEO,‎ ‎∵△DBE∽△ABC,‎ ‎∴∠A=∠EDB,‎ 又∵∠EDO=∠DEO,‎ ‎∴∠AEF=∠A,‎ ‎∴△FAE是等腰三角形。‎ 解法二:连结OE,‎ ‎∵EF为半圆O的切线,‎ ‎∴∠AEF+∠OEB=90°,‎ ‎∵∠C=90°,‎ ‎∴∠A+∠B=90°,‎ ‎∵OE=OB ‎∴∠OEB=∠B,‎ ‎∴∠AEF=∠A ‎∴△FAE是等腰三角形。‎ ‎22.(2009临沂)如图,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东方向上.‎ ‎(1)求出A,B两村之间的距离;‎ ‎(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置(保留清晰的作图痕迹,并简要写明作法).‎ 北 东 B A C D l ‎【关键词】等腰直角三角形的性质,勾股定理,尺规作图 ‎【答案】解:(1)方法一:设与的交点为,根据题意可得.‎ 和都是等腰直角三角形.‎ ‎,.‎ 两村的距离为(km).‎ 方法二:过点作直线的平行线交的延长线于.‎ 易证四边形是矩形,‎ ‎.‎ 在中,由,可得.‎ ‎(km)‎ 两村的距离为km.‎ ‎(2)作图正确,痕迹清晰.‎ B A C D l N M O P 作法:①分别以点为圆心,以大于的长为 半径作弧,两弧交于两点,‎ 作直线;‎ ‎②直线交于点,点即为所求.‎ ‎1.(2009年中山)如图所示,是等边三角形, 点是的中点,延长到,使,‎ ‎(1)用尺规作图的方法,过点作,垂足是(不写作法,保留作图痕迹);‎ ‎(2)求证:.‎ ‎【关键词】等腰三角形,等边三角形 ‎【答案】解:(1)作图见下图,‎ A C B D E M ‎(2)是等边三角形,是的中点,‎ 平分(三线合一),‎ ‎.‎ ‎,‎ ‎.‎ 又,‎ ‎.‎ 又,‎ ‎,‎ ‎,‎ ‎.‎ 又,‎ ‎.‎ ‎23.(2009年牡丹江)有一块直角三角形的绿地,量得两直角边长分别为 现在要将绿地扩充成等腰三角形,且扩充部分是以为直角边的直角三角形,求扩充后等腰三角形绿地的周长.‎ ‎【关键词】等腰三角形,勾股定理 ‎【答案】在中,‎ 由勾股定理有:,扩充部分为扩充成等腰应分以下三种情况.‎ ‎ ①如图1,当时,可求 ‎ 得的周长为32m.‎ ‎②如图2,当时,可求 由勾股定理得:,得的周长为 ‎③如图3,当为底时,设则 由勾股定理得:,得的周长为 A D C B A D B C A D B C 图1‎ 图2‎ 图3‎ ‎24.(2009年宁德市)(本题满分13分)如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.‎ ‎(1)求P点坐标及a的值;(4分)‎ ‎(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4分)‎ ‎(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.(5分)‎ y x A O B P N 图2‎ C1‎ C4‎ Q E F 图(2)‎ y x A O B P M 图1‎ C1‎ C2‎ C3‎ 图(1)‎ ‎【关键词】二次函数,勾股定理的运用 y x A O B P M 图(1)‎ C1‎ C2‎ C3‎ H G 解:(1)由抛物线C1:得 顶点P的为(-2,-5) ‎ ‎∵点B(1,0)在抛物线C1上 ‎∴‎ ‎ 解得,a= ‎ ‎(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G ‎∵点P、M关于点B成中心对称 ‎∴PM过点B,且PB=MB ‎∴△PBH≌△MBG ‎∴MG=PH=5,BG=BH=3‎ ‎∴顶点M的坐标为(4,5) ‎ ‎ 抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到 ‎∴抛物线C3的表达式为 ‎ ‎(3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到 ‎∴顶点N、P关于点Q成中心对称 ‎ 由(2)得点N的纵坐标为5‎ 设点N坐标为(m,5) ‎ y x A O B P N 图(2)‎ C1‎ C4‎ Q E F H G K ‎ ‎ ‎ 作PH⊥x轴于H,作NG⊥x轴于G ‎ 作PK⊥NG于K ‎ ∵旋转中心Q在x轴上 ‎∴EF=AB=2BH=6‎ ‎ ∴FG=3,点F坐标为(m+3,0)‎ ‎ H坐标为(2,0),K坐标为(m,-5),‎ 根据勾股定理得 ‎ PN2=NK2+PK2=m2+4m+104‎ ‎ PF2=PH2+HF2=m2+10m+50‎ ‎ NF2=52+32=34 ‎ ‎ ①当∠PNF=90º时,PN2+ NF2=PF2,解得m=,∴Q点坐标为(,0) ‎ ‎②当∠PFN=90º时,PF2+ NF2=PN2,解得m=,∴Q点坐标为(,0)‎ ‎③∵PN>NK=10>NF,∴∠NPF≠90º 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点 的三角形是直角三角形. ‎ ‎25.(2009年河北)图10是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD = 24 m,‎ OE⊥CD于点E.已测得sin∠DOE = .‎ ‎(1)求半径OD;‎ ‎(2)根据需要,水面要以每小时0.5 m的速度下降,则经过多长时间才能将水排干?‎ A O B 图10‎ E C D ‎ ‎ ‎【关键词】解直角三角形,勾股定理,‎ 解:(1)∵OE⊥CD于点E,CD=24,‎ ‎∴ED ==12.‎ ‎ 在Rt△DOE中,‎ ‎∵sin∠DOE = =,‎ ‎∴OD =13(m). ‎ ‎ (2)OE=‎ ‎=.‎ ‎ ∴将水排干需:‎ ‎5÷0.5=10(小时). ‎ ‎26.(2009年潍坊)在四边形中,,且.取的中点,连结.‎ ‎(1)试判断三角形的形状;‎ ‎(2)在线段上,是否存在点,使.若存在,请求出的长;若不存在,请说明理由.‎ P D C B A 解:(1)在四边形中,,,‎ 四边形为直角梯形(或矩形).‎ 过点作,垂足为,,‎ 又点是的中点,点是的中点,‎ 又,‎ ‎, ‎ 与是全等的等腰直角三角形,‎ ‎,‎ 是等腰直角三角形. ‎ ‎(2)存在点使. ‎ 以为直径,为圆心作圆.‎ 当时,四边形为矩形,,‎ 圆与相切于点,此时,点与点重合,存在点,使得,‎ 此时. ‎ 当时,四边形为直角梯形,‎ ‎,,圆心到的距离小于圆的半径,圆与相交,上存在两点,使, ‎ 过点作,在中,,‎ 连结,则,‎ 在直角三角形中,,‎ ‎.‎ 同理可得:.‎ 综上所述,在线段上存在点,使.‎ 当时,有一点,;当时,有两点,. ‎ P D C B A Q E M2‎ M1‎ ‎27.(09湖北宜昌)已知:如图, AF平分∠BAC,BC⊥AF, 垂足为E,点D与点A关于点E对称,PB分别与线段CF, AF相交于P,M.‎ ‎(1)求证:AB=CD;‎ ‎(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD 的数量关系,并说明理由. ‎ ‎【关键词】全等三角形的性质与判定、等腰三角性的性质 ‎【答案】解:(1)证明:∵AF平分∠BAC, ‎ ‎ ∴∠CAD=∠DAB=∠BAC.‎ ‎∵D与A关于E对称,∴E为AD中点.‎ ‎∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD. ‎ 在Rt△ACE和Rt△ABE中,注:证全等也可得到AC=CD ‎∠CAD+∠ACE=∠DAB+∠ABE=90°, ∠CAD=∠DAB.‎ ‎∴∠ACE=∠ABE,∴AC=AB. 注:证全等也可得到AC=AB ‎∴AB=CD. ‎ ‎ ‎ ‎(2)∵∠BAC=2∠MPC, 又∵∠BAC=2∠CAD,∴∠MPC=∠CAD.‎ ‎∵AC=CD,∴∠CAD=∠CDA, ∴∠MPC=∠CDA. ‎ ‎∴∠MPF=∠CDM. ‎ ‎∵AC=AB,AE⊥BC,∴CE=BE. 注:证全等也可得到CE=BE ‎∴AM为BC的中垂线,∴CM=BM. 注:证全等也可得到CM=BM ‎∵EM⊥BC,∴EM平分∠CMB,(等腰三角形三线合一) ‎ ‎∴∠CME=∠BME. 注:证全等也可得到∠CME=∠BME ‎ ‎∵∠BME=∠PMF,‎ ‎∴∠PMF=∠CME, ‎ ‎∴∠MCD=∠F(三角形内角和). 注:证三角形相似也可得到∠MCD=∠F ‎28.(09湖南怀化)如图12,在直角梯形OABC中, OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交轴于点F.设动点P、Q运动时间为t(单位:秒).‎ ‎(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;‎ ‎(2)当t=2秒时,求梯形OFBC的面积;‎ ‎(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.‎ ‎【关键词】一元二次方程解法及应用、勾股定理及逆定理、等腰三角形、等腰梯形的判定 ‎【答案】‎ 解:(1)如图4,过B作 则 过Q作 则 要使四边形PABQ是等腰梯形,则,‎ 即 或(此时是平行四边形,不合题意,舍去)‎ ‎(2)当时,。‎ ‎(3)①当时,则 ‎②当时,‎ 即 ‎③当时, ‎ 综上,当时,△PQF是等腰三角形. ‎ ‎29.(09湖南邵阳)如图,在梯形中,,,,将延长至点,使.‎ ‎(1)求的度数;‎ ‎(2)求证:为等腰三角形.‎ D A F B C ‎【关键词】等腰三角性的性质与判定、等腰梯形的性质 ‎【答案】(1)‎ ‎.‎ 在中,‎ ‎;‎ ‎(2)连接.在梯形中,,,‎ 在四边形中,‎ 四边形是平行四边形,,‎ ‎,即为等腰三角形.‎ ‎【关键词】直角三角形的有关计算、勾股定理 ‎【答案】C ‎30.(2009年湖北十堰市)如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).‎ ‎(供选用的数据:≈1.414,≈1.732)‎ ‎【关键词】直角三角形的有关计算、测量问题、勾股定理 ‎【答案】解:由题意可知 ‎ ∠ACP= ∠BCP= 90°,∠APC=30°,∠BPC=45°…2分 在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴‎ 在Rt△ACP中,∵∠ACP=90°,∠APC=30°,∴ ‎ ‎∴‎ ‎≈60+20×1.732 =94.64≈94.6(米) ‎ 答:教学楼A与办公楼B之间的距离大约为94.6米.‎ 说明:(1)其它解法请参照上述评分说明给分;(2)不作答不扣分.‎ ‎31.(2009年达州)如图10,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F.‎ ‎(1)求证:DF垂直平分AC;‎ ‎(2)求证:FC=CE;‎ ‎(3)若弦AD=5㎝,AC=8㎝,求⊙O的半径. ‎ ‎【关键词】圆,平行四边形,勾股定理 ‎【答案】‎ ‎(1)∵DE是⊙O的切线,且DF过圆心O ‎∴DF⊥DE 又∵AC∥DE ‎∴DF⊥AC ‎∴DF垂直平分AC ‎ ‎(2)由(1)知:AG=GC 又∵AD∥BC ‎∴∠DAG=∠FCG 又∵∠AGD=∠CGF ‎∴△AGD≌△CGF(ASA)‎ ‎∴AD=FC ‎∵AD∥BC且AC∥DE ‎∴四边形ACED是平行四边形 ‎∴AD=CE ‎∴FC=CE5分 ‎(3)连结AO; ∵AG=GC,AC=8cm,∴AG=4cm 在Rt△AGD中,由勾股定理得 GD=AD2-AG2=52-42=3cm ‎ 设圆的半径为r,则AO=r,OG=r-3‎ 在Rt△AOG中,由勾股定理得 AO2=OG2+AG2‎ 有:r2=(r-3)2+42解得 r=256 ‎ ‎∴⊙O的半径为256cm.‎ ‎32.(2009年广东省)如图所示,是等边三角形,点是的中点,延长到,使.‎ ‎(1)用尺规作图的方法,过点作,垂足是(不写作法,保留作图痕迹);‎ ‎(2)求证:.‎ A B C E D ‎【关键词】等边三角形;线段和角的概念、性质、画法及有关计算 ‎【答案】解:(1)作图如下图,‎ A B E D C M ‎(2)是等边三角形,是的中点 平分(三线合一),‎ ‎,‎ ‎,‎ ‎,‎ 又 ‎,‎ 又,‎ ‎,‎ ‎,‎ ‎,‎ 又,‎ ‎33.(2009 黑龙江大兴安岭)在边长为4和6的矩形中作等腰三角形,使等腰三角形的一条边是矩形的长或宽,第三个顶点在矩形的边上,求所作三角形的面积.‎ ‎(注:形状相同的三角形按一种计算.)‎ ‎【关键词】等腰三角形 ‎【答案】. 面积是12,面积是8和12‎ ‎34.(2009年崇左)如图,在等腰梯形中,已知,,延长到,使.‎ ‎(1)证明:;‎ D A B E C F ‎(第24题)‎ ‎(2)如果,求等腰梯形的高的值.‎ ‎【关键词】在等腰梯形性质进行转化。‎ ‎【答案】‎ ‎(1)证明:.‎ 又四边形是等腰梯形,,‎ ‎.‎ ‎.‎ ‎(2)四边形是平行四边形,‎ ‎.‎ ‎.‎ 由(1)可知,,.‎ 所以,是等腰直角三角形,即,‎ ‎.‎ 四边形是等腰梯形,而,‎ ‎.‎ ‎.‎ ‎(2009龙岩)阅读下列材料:‎ 正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.‎ 数学老师给小明同学出了一道题目:在图正方形网格(每个小正方形边长为1)中画出格点△ABC,使,;‎ 小明同学的做法是:由勾股定理,得,,于是画出线段AB、AC、BC,从而画出格点△ABC.‎ ‎(1)请你参考小明同学的做法,在图23-2正方形网格(每个小正方形边长为1)中画出格点△(点位置如图所示),使==5,.(直接画出图形,不写过程);‎ ‎(2)观察△ABC与△的形状,猜想∠BAC与∠有怎样的数量关系,并证明你的猜想.‎ C B A ‎【关键词】等腰三角形 ‎【答案】(1)正确画出△‎ ‎(画出其中一种情形即可)‎ ‎ (2)猜想:∠BAC =∠ ‎ 证明:∵,;‎ ‎∴,‎ ‎∴△ABC ∽ △,‎ ‎∴∠BAC =∠ ‎