- 453.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2009年上海市初中毕业统一学业考试
数 学 卷
(满分150分,考试时间100分钟)
考生注意:
1.本试卷含三个大题,共25题;
2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】
1.计算的结果是(B )
A. B. C. D.
2.不等式组的解集是( C )
A. B. C. D.
3.用换元法解分式方程时,如果设,将原方程化为关于的整式方程,那么这个整式方程是( A )
A. B.
C. D.
4.抛物线(是常数)的顶点坐标是( B )
A. B. C. D.
5.下列正多边形中,中心角等于内角的是( C )
A
B
D
C
E
F
图1
A.正六边形 B.正五边形 C.正四边形 C.正三边形
6.如图1,已知,那么下列结论正确的是(A )
A. B.
C. D.
二、填空题:(本大题共12题,每题4分,满分48分)
【请将结果直线填入答题纸的相应位置】
7.分母有理化:.
8.方程的根是 x=2 .
9.如果关于的方程(为常数)有两个相等的实数根,那么.
10.已知函数,那么 —1/2 .
11.反比例函数图像的两支分别在第 I III 象限.
12.将抛物线向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 .
13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 1/6 .
图2
A
C
D
B
14.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是,那么该商品现在的价格是100*(1—m)^2 元(结果用含的代数式表示).
15.如图2,在中,是边上的中线,设向量 ,
如果用向量,表示向量,那么=+(/2).
A
图3
B
M
C
16.在圆中,弦的长为6,它所对应的弦心距为4,那么半径 5 .
17.在四边形中,对角线与互相平分,交点为.在不添加任何辅助线的前提下,要使四边形成为矩形,还需添加一个条件,这个条件可以是AC=BD 或者有个内角等于90度 .
18.在中,为边上的点,联结(如图3所示).如果将沿直线翻折后,点恰好落在边的中点处,那么点到的距离是 2 .
三、解答题:(本大题共7题,满分78分)
19.(本题满分10分)
计算:.
= —1
20.(本题满分10分)
解方程组:
(X=2 y=3 ) (x=-1 y=0)
21.(本题满分10分,每小题满分各5分)
如图4,在梯形中,,联结
.
(1)求的值;
(2)若分别是的中点,联结,求线段的长.
A
D
C
图4
B
(1) 二分之根号3
(2)8
22.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分2分,第(4)小题满分3分)
为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出).
次数
0
1
2
3
4
5
6
7
8
9
10
人数
1
1
2
2
3
4
2
2
2
0
1
表一
九年级
八年级
七年级
六年级
25%
30%
25%
图5
根据上述信息,回答下列问题(直接写出结果):
(1)六年级的被测试人数占所有被测试人数的百分率是 20% ;
(2)在所有被测试者中,九年级的人数是 6 ;
(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 35% ;
(4)在所有被测试者的“引体向上”次数中,众数是 5 .
图6
O
D
C
A
B
E
F
23.(本题满分12分,每小题满分各6分)
已知线段与相交于点,联结,为的中点,为的中点,联结(如图6所示).
(1)添加条件,,
求证:.
证明:由已知条件得:2OE=2OC OB=OC 又
角AOB=角DOC 所以三角形ABO全等于三角形DOC
所以
(2)分别将“”记为①,“”记为②,“”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 真 命题,命题2是 假 命题(选择“真”或“假”填入空格).
24.(本题满分12分,每小题满分各4分)
C
M
O
x
y
1
2
3
4
图7
A
1
B
D
在直角坐标平面内,为原点,点的坐标为,点的坐标为,直线轴(如图7所示).点与点关于原点对称,直线(为常数)经过点,且与直线相交于点,联结.
(1)求的值和点的坐标;
(2)设点在轴的正半轴上,若是等腰三角形,求点的坐标;
(3)在(2)的条件下,如果以为半径的圆与圆外切,求圆的半径.
解:(1)点B(—1,0),代入得到 b=1 直线BD: y=x+1
Y=4代入 x=3 点D(3,1)
(2)1、PO=OD=5 则P(5,0)
2、PD=OD=5 则PO=2*3=6 则点P(6,0)
3、PD=PO 设P(x,0) D(3,4)
则由勾股定理 解得 x=25/6 则点P(25/6,0)
(3)由P,D两点坐标可以算出:
1、PD=2 r=5—2 2、PD=5 r=1 3、PD=25/6 r=0
25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)
已知为线段上的动点,点在射线上,且满足(如图8所示).
(1)当,且点与点重合时(如图9所示),求线段的长;
(2)在图8中,联结.当,且点在线段上时,设点之间的距离为,,其中表示的面积,表示的面积,求关于的函数解析式,并写出函数定义域;
A
D
P
C
B
Q
图8
D
A
P
C
B
(Q)
)
图9
图10
C
A
D
P
B
Q
(3)当,且点在线段的延长线上时(如图10所示),求的大小.
解:(1)AD=2,且Q点与B点重合,根据题意,∠PBC=∠PDA,因为∠A=90。 PQ/PC=AD/AB=1,所以:△PQC为等腰直角三角形,BC=3,所以:PC=3 /2,
(2)如图:添加辅助线,根据题意,两个三角形的面积可以分别表示成S1,S2, 高分别是H,h,
则:S1=(2-x)H/2=(2*3/2)/2-(x*H/2)-(3/2)*(2-h)/2
S2=3*h/2 因为两S1/S2=y,消去H,h,得:
Y=-(1/4)*x+(1/2),
定义域:当点P运动到与D点重合时,X的取值就是最大值,当PC垂直BD时,这时X=0,连接DC,作QD垂直DC,由已知条件得:B、Q、D、C四点共圆,则由圆周角定理可以推知:三角形QDC相似于三角形ABD
QD/DC=AD/AB=3/4,令QD=3t,DC=4t,则:QC=5t,由勾股定理得:
直角三角形AQD中:(3/2)^2+(2-x)^2=(3t)^2
直角三角形QBC中:3^2+x^2=(5t)^2
整理得:64x^2-400x+301=0 (8x-7)(8x-43)=0
得 x1=7/8 x2=(43/8)>2(舍去) 所以函数:
Y=-(1/4)*x+1/2的定义域为[0,7/8]
(3)因为:PQ/PC=AD/AB,假设PQ不垂直PC,则可以作一条直线PQ′垂直于PC,与AB交于Q′点,
则:B,Q′,P,C四点共圆,由圆周角定理,以及相似三角形的性质得:
PQ′/PC=AD/AB,
又由于PQ/PC=AD/AB 所以,点Q′与点Q重合,所以角∠QPC=90。
A
D
P
C
B
Q
图8
D
A
P
C
B
(Q)
)
图9
图10
C
A
D
P
B
Q