• 4.02 MB
  • 2021-05-10 发布

中考数学压轴题之初中数学专题

  • 51页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
中考数学压轴题专题复习 ‎1.(2008年四川省宜宾市)‎ 已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.求该抛物线的解析式;‎ (1) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;‎ (2) ‎△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.‎ ‎(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)‎ ‎2. (08浙江衢州)已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;‎ ‎(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;‎ ‎(2)当纸片重叠部分的图形是四边形时,求t的取值范围;‎ ‎(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.‎ y B C y T A C B O x O T A x ‎ ‎ ‎3. (08浙江温州)如图,在中,,,,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于 ‎,当点与点重合时,点停止运动.设,.‎ ‎(1)求点到的距离的长;‎ ‎(2)求关于的函数关系式(不要求写出自变量的取值范围);‎ ‎(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.‎ A B C D E R P H Q ‎4.(08山东省日照市)在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x. ‎ ‎(1)用含x的代数式表示△MNP的面积S; ‎ ‎(2)当x为何值时,⊙O与直线BC相切? ‎ ‎(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?‎ A B C M N P 图 3‎ O A B C M N D 图 2‎ O A B C M N P 图 1‎ O ‎5、(2007浙江金华)如图1,已知双曲线y=(k>0)与直线y=k′x交于A,B两点,点A在第一象限.试解答下列问题:(1)若点A的坐标为(4,2).则点B的坐标为 ;若点A的横坐标为m,则点B的坐标可表示为 ;‎ ‎(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.①说明四边形APBQ一定是平行四边形;②设点A.P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出mn应满足的条件;若不可能,请说明理由. ‎ x y B A O 图1‎ B A O P Q 图2‎ ‎6. (2008浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使ΔOPD的面积等于,若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.‎ ‎7.(2008浙江义乌)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: ‎ ‎(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;‎ ‎②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.‎ ‎(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.‎ ‎(3)在第(2)题图5中,连结、,且a=3,b=2,k=,求的值.‎ ‎8. (2008浙江义乌)如图1所示,直角梯形OABC的顶点A、C分别在y轴正半轴与轴负半轴上.过点B、C作直线.将直线平移,平移后的直线与轴交于点D,与轴交于点E.‎ ‎(1)将直线向右平移,设平移距离CD为(t0),直角梯形OABC被直线扫过的面积(图中阴影部份)为,关于的函数图象如图2所示, OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.‎ ‎①求梯形上底AB的长及直角梯形OABC的面积;‎ ‎②当时,求S关于的函数解析式;‎ ‎(2)在第(1)题的条件下,当直线向左或向右平移时(包括与直线BC重合),在直线AB上是否存在点P,使为等腰直角三角形?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由.‎ ‎ ‎ ‎9.(2008山东烟台)如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.‎ ‎(1)求证:△BDE≌△BCF; (2)判断△BEF的形状,并说明理由;(3)设△BEF的面积为S,求S的取值范围.‎ ‎10.(2008山东烟台)如图,抛物线交轴于A、B两点,交轴于M点.抛物线向右平移2个单位后得到抛物线,交轴于C、D两点.‎ ‎(1)求抛物线对应的函数表达式;‎ ‎(2)抛物线或在轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;‎ ‎(3)若点P是抛物线上的一个动点(P不与点A、B重合),那么点P关于原点的对称点Q是否在抛物线上,请说明理由.‎ ‎11.2008淅江宁波)‎2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.‎ ‎(1)求A地经杭州湾跨海大桥到宁波港的路程.‎ ‎(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?‎ ‎(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?‎ ‎①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸……都是矩形.‎ ‎②本题中所求边长或面积都用含的代数式表示.‎ ‎12.(2008淅江宁波)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸的短边长为.‎ ‎(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:‎ 第一步 将矩形的短边与长边对齐折叠,点落在上的点处,铺平后得折痕;‎ 第二步 将长边与折痕对齐折叠,点正好与点重合,铺平后得折痕.‎ 则的值是 ,的长分别是 , .‎ ‎(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.‎ ‎(3)如图3,由8个大小相等的小正方形构成“”型图案,它的四个顶点分别在“16开”纸的边上,求的长.‎ ‎(4)已知梯形中,,,,且四个顶点都在“4开”‎ 纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.‎ A B C D B C A D E G H F F E ‎4开 ‎2开 ‎8开 ‎16开 图1‎ 图2‎ 图3‎ a ‎13.(2008山东威海)如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.‎ ‎(1)求梯形ABCD的面积; ‎ ‎(2)求四边形MEFN面积的最大值. ‎ ‎(3)试判断四边形MEFN能否为正方形,若能,‎ 求出正方形MEFN的面积;若不能,请说明理由. ‎ C D A B E F N M ‎14.(2008山东威海)如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上. ‎ x O y A B ‎(1)求m,k的值; ‎ ‎(2)如果M为x轴上一点,N为y轴上一点, ‎ 以点A,B,M,N为顶点的四边形是平行四边形, ‎ 试求直线MN的函数表达式. ‎ x O y ‎1‎ ‎2‎ ‎3‎ ‎1‎ Q P ‎2‎ P1‎ Q1‎ ‎(3)选做题:在平面直角坐标系中,点P的坐标 为(5,0),点Q的坐标为(0,3),把线段PQ向右平 移4个单位,然后再向上平移2个单位,得到线段P1Q1,‎ 则点P1的坐标为 ,点Q1的坐标为 .‎ ‎ ‎ ‎15.(2008湖南益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.‎ 如图12,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.‎ (1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;‎ ‎(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;‎ ‎(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.‎ A O B M D C 图12‎ y x ‎16.(2008年浙江省绍兴市)将一矩形纸片放在平面直角坐标系中,,,.动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动.当其中一点到达终点时,另一点也停止运动.设点的运动时间为(秒).‎ ‎(1)用含的代数式表示;‎ ‎(2)当时,如图1,将沿翻折,点恰好落在边上的点处,求点的坐标;‎ (1) 连结,将沿翻折,得到,如图2.问:与能否平行?与 能否垂直?若能,求出相应的值;若不能,说明理由.‎ 图1‎ O P A x B D C Q y 图2‎ O P A x B C Q y E ‎17.(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过三点.‎ ‎(1)求过三点抛物线的解析式并求出顶点的坐标;‎ ‎(2)在抛物线上是否存在点,使为直角三角形,若存在,直接写出点坐标;若不存在,请说明理由;‎ ‎(3)试探究在直线上是否存在一点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由.‎ A O x y B F C 图16‎ ‎18.(2008年沈阳市)如图所示,在平面直角坐标系中,矩形的边在轴的负半轴上,边在轴的正半轴上,且,,矩形绕点按顺时针方向旋转后得到矩形.点的对应点为点,点的对应点为点,点的对应点为点,抛物线过点.‎ ‎(1)判断点是否在轴上,并说明理由;‎ ‎(2)求抛物线的函数表达式;‎ ‎(3)在轴的上方是否存在点,点,使以点为顶点的平行四边形的面积是矩形面积的2倍,且点在抛物线上,若存在,请求出点,点的坐标;若不存在,请说明理由.‎ y x O D E C F A B ‎19.(2008年四川省巴中市) 已知:如图14,抛物线与轴交于点,点,与直线相交于点,点,直线与轴交于点.‎ ‎(1)写出直线的解析式.‎ ‎(2)求的面积.‎ ‎(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,‎ 的面积最大,最大面积是多少?‎ ‎20.(2008年成都市)如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且=3,sin∠OAB=.‎ ‎(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;‎ ‎(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;‎ ‎(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为,△QNR的面积,求∶的值.‎ ‎21.(2008年乐山市)在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆过点C若C的坐标为(0,2),AB=5, A,B两点的横坐标XA,XB是关于X的方程的两根:‎ (1) 求m,n的值 (2) 若∠ACB的平分线所在的直线交x轴于点D,试求直线对应的一次函数的解析式 (3) 过点D任作一直线分别交射线CA,CB(点C除外)于点M,N,则的值是否为定值,若是,求出定值,若不是,请说明理由 A C O B N D M L`‎ ‎22.(2008年四川省宜宾市)已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.‎ ‎(1)求该抛物线的解析式;‎ ‎(2)若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;‎ ‎(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.‎ ‎(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)‎ ‎23.(天津市2008年)已知抛物线,‎ ‎(Ⅰ)若,,求该抛物线与轴公共点的坐标;‎ ‎(Ⅱ)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;‎ ‎(Ⅲ)若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.‎ ‎24.(2008年大庆市)‎ 如图①,四边形和都是正方形,它们的边长分别为(),且点在上(以下问题的结果均可用的代数式表示).‎ ‎(1)求;‎ ‎(2)把正方形绕点按逆时针方向旋转45°得图②,求图②中的;‎ ‎(3)把正方形绕点旋转一周,在旋转的过程中,是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.‎ D C B A E F G G F E A B C D ‎①‎ ‎②‎ ‎.‎ ‎25. (2008年上海市)已知,,(如图13).是射线上的动点(点与点不重合),是线段的中点.‎ ‎(1)设,的面积为,求关于的函数解析式,并写出函数的定义域;‎ ‎(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;‎ ‎(3)联结,交线段于点,如果以为顶点的三角形与相似,求线段的长.‎ B A D M E C 图13‎ B A D C 备用图 ‎26. (2008年陕西省)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处.‎ 如图,甲,乙两村坐落在夹角为的两条公路的段和段(村子和公路的宽均不计),点表示这所中学.点在点的北偏西的‎3km处,点在点的正西方向,点在点的南偏西的km处.‎ 为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:‎ 方案一:供水站建在点处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;‎ 方案二:供水站建在乙村(线段某处),甲村要求管道建设到处,请你在图①中,画出铺设到点和点处的管道长度之和最小的线路图,并求其最小值;‎ 方案三:供水站建在甲村(线段某处),请你在图②中,画出铺设到乙村某处和点处的管道长度之和最小的线路图,并求其最小值.‎ 综上,你认为把供水站建在何处,所需铺设的管道最短?‎ M A E C D B F 乙村 甲村 东 北 图①‎ M A E C D B F 乙村 甲村 图②‎ O O ‎27. (2008年山东省青岛市)已知:如图①,在Rt△ACB中,∠C=90°,AC=‎4cm,BC=‎3cm,点P由B出发沿BA方向向点A匀速运动,速度为‎1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为‎2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2‎ ‎),解答下列问题:‎ ‎(1)当t为何值时,PQ∥BC?‎ ‎(2)设△AQP的面积为y(),求y与t之间的函数关系式;‎ ‎(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;‎ ‎(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.‎ 图②‎ A Q C P B 图①‎ A Q C P B ‎28. (2008年江苏省南通市)已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.‎ ‎(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.‎ ‎(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.‎ ‎(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.‎ ‎29. (2008年江苏省无锡市)一种电讯信号转发装置的发射直径为‎31km.现要求:在一边长为‎30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:‎ ‎(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?‎ ‎(2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求?‎ 答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为‎30km的正方形城区示意图,供解题时选用)‎ 图4‎ 图3‎ 图2‎ 图1‎ 压轴题答案 ‎1. 解:( 1)由已知得:解得 c=3,b=2‎ ‎∴抛物线的线的解析式为 ‎(2)由顶点坐标公式得顶点坐标为(1,4)‎ 所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)‎ 设对称轴与x轴的交点为F 所以四边形ABDE的面积=‎ ‎=‎ ‎=‎ ‎=9‎ ‎(3)相似 如图,BD=‎ BE=‎ DE=‎ 所以, 即: ,所以是直角三角形 所以,且,‎ 所以.‎ ‎2. (1) ∵A,B两点的坐标分别是A(10,0)和B(8,),‎ ‎ ∴,‎ ‎ ∴‎ ‎ 当点A´在线段AB上时,∵,TA=TA´,‎ ‎ ∴△A´TA是等边三角形,且,‎ ‎ ∴,,‎ A´‎ y E ‎ ∴,‎ x O C T P B A ‎ 当A´与B重合时,AT=AB=,‎ ‎ 所以此时.‎ ‎ (2)当点A´在线段AB的延长线,且点P在线段AB(不与B重合)上时,‎ ‎ 纸片重叠部分的图形是四边形(如图(1),其中E是TA´与CB的交点),‎ A´‎ y x ‎ 当点P与B重合时,AT=2AB=8,点T的坐标是(2,0)‎ ‎ 又由(1)中求得当A´与B重合时,T的坐标是(6,0)‎ P B E ‎ 所以当纸片重叠部分的图形是四边形时,.‎ F C ‎ (3)S存在最大值 A T O ‎ 当时,,‎ ‎ 在对称轴t=10的左边,S的值随着t的增大而减小,‎ ‎∴当t=6时,S的值最大是.‎ 当时,由图,重叠部分的面积 ‎∵△A´EB的高是,‎ ‎∴‎ ‎ ‎ 当t=2时,S的值最大是;‎ 当,即当点A´和点P都在线段AB的延长线是(如图,其中E是TA´与CB的交点,F是TP与CB的交点),‎ ‎∵,四边形ETAB是等腰形,∴EF=ET=AB=4,‎ ‎∴‎ 综上所述,S的最大值是,此时t的值是.‎ ‎3. 解:(1),,,.‎ 点为中点,.‎ ‎,.‎ ‎,‎ ‎,.‎ ‎(2),.‎ ‎,,‎ ‎,,‎ 即关于的函数关系式为:.‎ ‎(3)存在,分三种情况:‎ A B C D E R P H Q M ‎2‎ ‎1‎ ‎①当时,过点作于,则.‎ ‎,,‎ ‎.‎ ‎,,‎ A B C D E R P H Q ‎,.‎ A B C D E R P H Q ‎②当时,,‎ ‎.‎ ‎③当时,则为中垂线上的点,‎ 于是点为的中点,‎ ‎.‎ ‎,‎ ‎,.‎ 综上所述,当为或6或时,为等腰三角形.‎ ‎4. A B C M N P 图 1‎ O 解:(1)∵MN∥BC,∴∠AMN=∠B,∠ANM=∠C. ‎ ‎ ∴ △AMN ∽ △ABC.‎ ‎∴ ,即.‎ ‎∴ AN=x. ……………2分 ‎∴ =.(0<<4) ……………3分 A B C M N D 图 2‎ O Q ‎(2)如图2,设直线BC与⊙O相切于点D,连结AO,OD,则AO =OD =MN.‎ 在Rt△ABC中,BC ==5.‎ ‎ 由(1)知 △AMN ∽ △ABC. ‎ ‎∴ ,即. ‎ ‎∴ ,‎ ‎∴ . …………………5分 过M点作MQ⊥BC 于Q,则. ‎ 在Rt△BMQ与Rt△BCA中,∠B是公共角,‎ ‎∴ △BMQ∽△BCA.‎ ‎∴ .‎ ‎∴ ,. ‎ ‎∴ x=. ‎ ‎∴ 当x=时,⊙O与直线BC相切.…………………………………7分 A B C M N P 图 3‎ O ‎(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点.‎ ‎∵ MN∥BC,∴ ∠AMN=∠B,∠AOM=∠APC.‎ ‎∴ △AMO ∽ △ABP. ‎ ‎∴ . AM=MB=2. ‎ 故以下分两种情况讨论: ‎ ① 当0<≤2时,. ‎ ‎∴ 当=2时, ……………………………………8分 ② 当2<<4时,设PM,PN分别交BC于E,F.‎ A B C M N P 图 4‎ O E F ‎∵ 四边形AMPN是矩形, ‎ ‎∴ PN∥AM,PN=AM=x. ‎ 又∵ MN∥BC, ‎ ‎∴ 四边形MBFN是平行四边形. ‎ ‎∴ FN=BM=4-x. ‎ ‎∴ . ‎ 又△PEF ∽ △ACB. ‎ ‎∴ .‎ ‎∴ . ……………………………………………… 9分 ‎=.……………………10分 当2<<4时,. ‎ ‎∴ 当时,满足2<<4,. ……………………11分 综上所述,当时,值最大,最大值是2. …………………………12分 ‎5. 解:(1)(-4,-2);(-m,-)‎ ‎(2) ①由于双曲线是关于原点成中心对称的,所以OP=OQ,OA=OB,所以四边形APBQ 一定是平行四边形 ‎②可能是矩形,mn=k即可 不可能是正方形,因为Op不能与OA垂直.‎ 解:(1)作BE⊥OA,‎ ‎∴ΔAOB是等边三角形 ‎∴BE=OB·sin60o=,‎ ‎∴B(,2)‎ ‎∵A(0,4),设AB的解析式为,所以,解得,的以直线AB的解析式为 ‎(2)由旋转知,AP=AD, ∠PAD=60o,‎ ‎∴ΔAPD是等边三角形,PD=PA=‎ ‎6. 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60o=,∴B(,2)‎ ‎∵A(0,4),设AB的解析式为,所以,解得,‎ 以直线AB的解析式为 ‎(2)由旋转知,AP=AD, ∠PAD=60o,‎ ‎∴ΔAPD是等边三角形,PD=PA=‎ 如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30°‎ ‎∴GD=BD=,DH=GH+GD=+=,‎ ‎∴GB=BD=,OH=OE+HE=OE+BG=‎ ‎∴D(,)‎ ‎(3)设OP=x,则由(2)可得D()若ΔOPD的面积为:‎ 解得:所以P(,0)‎ ‎7. 解: ‎ ‎(1)① ………………………………………………………………2分 ‎②仍然成立 ……………………………………………………1分 在图(2)中证明如下 ‎∵四边形、四边形都是正方形 ‎∴ ,, ‎ ‎∴…………………………………………………………………1分 ‎ ‎ ∴ (SAS)………………………………………………………1分 ‎∴ ‎ 又∵ ‎ ‎∴ ∴‎ ‎∴ …………………………………………………………………………1分 ‎(2)成立,不成立 …………………………………………………2分 简要说明如下 ‎∵四边形、四边形都是矩形,‎ 且,,,(,)‎ ‎∴ ,‎ ‎∴ ‎ ‎ ∴………………………………………………………………………1分 ‎∴‎ 又∵ ‎ ‎∴ ∴‎ ‎∴ ……………………………………………………………………………1分 ‎(3)∵ ∴‎ ‎ 又∵,,‎ ‎ ∴ ………………………………………………1分 ‎ ∴ ………………………………………………………………………1分 ‎8. 解: ‎ ‎(1)① ……………………………………………………………………………‎ ‎2分 ‎,,S梯形OABC=12 ……………………………………………2分 ‎②当时,‎ 直角梯形OABC被直线扫过的面积=直角梯形OABC面积-直角三角开DOE面积 ‎ …………………………………………4分 ‎(2) 存在 ……………………………………………………………………………………1分 ‎ …(每个点对各得1分)……5分 ‎ 对于第(2)题我们提供如下详细解答(评分无此要求).下面提供参考解法二:‎ ① ‎ 以点D为直角顶点,作轴 ‎ ‎ 设.(图示阴影)‎ ‎,在上面二图中分别可得到点的生标为P(-12,4)、P(-4,4)‎ E点在0点与A点之间不可能;‎ ‎② 以点E为直角顶点 ‎ ‎ 同理在②二图中分别可得点的生标为P(-,4)、P(8,4)E点在0点下方不可能.‎ 以点P为直角顶点 同理在③二图中分别可得点的生标为P(-4,4)(与①情形二重合舍去)、P(4,4),‎ E点在A点下方不可能.‎ 综上可得点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-,4)、‎ P(8,4)、P(4,4).‎ 下面提供参考解法二:‎ 以直角进行分类进行讨论(分三类):‎ 第一类如上解法⑴中所示图 ‎,直线的中垂线方程:,令得.由已知可得即化简得解得 ;‎ 第二类如上解法②中所示图 ‎,直线的方程:,令得.由已知可得即化简得解之得 ,‎ 第三类如上解法③中所示图 ‎,直线的方程:,令得.由已知可得即解得 ‎(与重合舍去).‎ 综上可得点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-,4)、‎ P(8,4)、P(4,4).‎ 事实上,我们可以得到更一般的结论:‎ 如果得出设,则P点的情形如下 直角分类情形 ‎9.‎ ‎10.‎ ‎11. 解:(1)设地经杭州湾跨海大桥到宁波港的路程为千米,‎ 由题意得, 2分 解得.‎ 地经杭州湾跨海大桥到宁波港的路程为180千米. 4分 ‎(2)(元),‎ 该车货物从地经杭州湾跨海大桥到宁波港的运输费用为380元. 6分 ‎(3)设这批货物有车,‎ 由题意得, 8分 整理得,‎ 解得,(不合题意,舍去), 9分 这批货物有8车. 10分 ‎12. 解:(1). 3分 ‎(2)相等,比值为. 5分(无“相等”不扣分有“相等”,比值错给1分)‎ ‎(3)设,‎ 在矩形中,,‎ ‎,‎ ‎,‎ ‎,‎ ‎,‎ ‎. 6分 同理.‎ ‎,‎ ‎,‎ ‎. 7分 ‎,‎ ‎, 8分 解得.‎ 即. 9分 ‎(4), 10分 ‎. 12分 ‎13. 解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ……………1分 ‎∵ AB∥CD, ‎ ‎∴ DG=CH,DG∥CH. ‎ ‎∴ 四边形DGHC为矩形,GH=CD=1. ‎ C D A B E F N M G H ‎∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,‎ ‎∴ △AGD≌△BHC(HL). ‎ ‎∴ AG=BH==3. ………2分 ‎ ‎∵ 在Rt△AGD中,AG=3,AD=5, ‎ ‎∴ DG=4. ‎ ‎∴ . ………………………………………………3分 C D A B E F N M G H ‎(2)∵ MN∥AB,ME⊥AB,NF⊥AB, ‎ ‎∴ ME=NF,ME∥NF. ‎ ‎∴ 四边形MEFN为矩形. ‎ ‎∵ AB∥CD,AD=BC, ‎ ‎∴ ∠A=∠B. ‎ ‎∵ ME=NF,∠MEA=∠NFB=90°, ‎ ‎∴ △MEA≌△NFB(AAS).‎ ‎∴ AE=BF. ……………………4分 ‎ 设AE=x,则EF=7-2x. ……………5分 ‎ ‎∵ ∠A=∠A,∠MEA=∠DGA=90°, ‎ ‎∴ △MEA∽△DGA.‎ ‎∴ .‎ ‎∴ ME=. …………………………………………………………6分 ‎∴ . ……………………8分 当x=时,ME=<4,∴四边形MEFN面积的最大值为.……………9分 ‎(3)能. ……………………………………………………………………10分 由(2)可知,设AE=x,则EF=7-2x,ME=. ‎ 若四边形MEFN为正方形,则ME=EF. ‎ ‎ 即 7-2x.解,得 . ……………………………………………11分 ‎∴ EF=<4. ‎ ‎∴ 四边形MEFN能为正方形,其面积为.‎ ‎14. x O y A B M1‎ N1‎ M2‎ N2‎ 解:(1)由题意可知,.‎ 解,得 m=3. ………………………………3分 ‎ ‎∴ A(3,4),B(6,2); ‎ ‎∴ k=4×3=12. ……………………………4分 ‎ ‎(2)存在两种情况,如图: ‎ ‎①当M点在x轴的正半轴上,N点在y轴的正半轴 上时,设M1点坐标为(x1,0),N1点坐标为(0,y1). ‎ ‎∵ 四边形AN1M1B为平行四边形,‎ ‎∴ 线段N1M1可看作由线段AB向左平移3个单位,‎ 再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).‎ 由(1)知A点坐标为(3,4),B点坐标为(6,2), ‎ ‎∴ N1点坐标为(0,4-2),即N1(0,2); ………………………………5分 M1点坐标为(6-3,0),即M1(3,0). ………………………………6分 设直线M1N1的函数表达式为,把x=3,y=0代入,解得.‎ ‎∴ 直线M1N1的函数表达式为. ……………………………………8分 ‎②当M点在x轴的负半轴上,N点在y轴的负半轴上时,设M2点坐标为(x2,0),N2点坐标为(0,y2). ‎ ‎∵ AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,‎ ‎∴ N1M1∥M2N2,N1M1=M2N2. ‎ ‎∴ 线段M2N2与线段N1M1关于原点O成中心对称. ‎ ‎∴ M2点坐标为(-3,0),N2点坐标为(0,-2). ………………………9分 设直线M2N2的函数表达式为,把x=-3,y=0代入,解得,‎ ‎∴ 直线M2N2的函数表达式为.    ‎ 所以,直线MN的函数表达式为或. ………………11分 ‎(3)选做题:(9,2),(4,5). ………………………………………………2分 ‎15. 解:(1)解法1:根据题意可得:A(-1,0),B(3,0);‎ 则设抛物线的解析式为(a≠0) ‎ 又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1 ‎ ‎ ∴y=x2-2x-3 3分 自变量范围:-1≤x≤3 4分 ‎ 解法2:设抛物线的解析式为(a≠0)‎ ‎ 根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上 ‎ ∴,解之得:‎ ‎∴y=x2-2x-3 3分 自变量范围:-1≤x≤3 4分 ‎ (2)设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,‎ ‎ 在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=‎ ‎ 在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4‎ ‎ ∴点C、E的坐标分别为(0,),(-3,0) 6分 A O B M D C 解图12‎ y x E ‎∴切线CE的解析式为 8分 ‎(3)设过点D(0,-3),“蛋圆”切线的解析式为:y=kx-3(k≠0) 9分 ‎ 由题意可知方程组只有一组解 ‎ 即有两个相等实根,∴k=-2 11分 ‎ ∴过点D“蛋圆”切线的解析式y=-2x-3 12分 ‎16.‎ 解:(1),.‎ 图1‎ O P A x B D C Q y 图2‎ O P A x B C Q y 图3‎ O F A x B C y E Q P ‎(2)当时,过点作,交于,如图1,‎ 则,,‎ ‎,.‎ ‎(3)①能与平行.‎ 若,如图2,则,‎ 即,,而,‎ ‎.‎ ‎②不能与垂直.‎ 若,延长交于,如图3,‎ 则.‎ ‎.‎ ‎.‎ 又,,‎ ‎,‎ ‎,而,‎ 不存在.‎ ‎17. 解:(1)直线与轴交于点,与轴交于点.‎ ‎, 1分 点都在抛物线上,‎ ‎ ‎ 抛物线的解析式为 3分 顶点 4分 ‎(2)存在 5分 ‎ 7分 ‎ 9分 ‎(3)存在 10分 理由:‎ 解法一:‎ 延长到点,使,连接交直线于点,则点就是所求的点.‎ ‎ 11分 A O x y B F C 图9‎ H B M 过点作于点.‎ 点在抛物线上,‎ 在中,,‎ ‎,,‎ 在中,,‎ ‎,, 12分 设直线的解析式为 ‎ 解得 ‎ 13分 ‎ 解得 ‎ 在直线上存在点,使得的周长最小,此时. 14分 解法二:‎ A O x y B F C 图10‎ H M G 过点作的垂线交轴于点,则点为点关于直线的对称点.连接交于点,则点即为所求. 11分 过点作轴于点,则,.‎ ‎,‎ 同方法一可求得.‎ 在中,,,可求得,‎ 为线段的垂直平分线,可证得为等边三角形,‎ 垂直平分.‎ 即点为点关于的对称点. 12分 设直线的解析式为,由题意得 ‎ 解得 ‎ 13分 ‎ 解得 ‎ 在直线上存在点,使得的周长最小,此时. 1‎ ‎18. 解:(1)点在轴上 1分 理由如下:‎ 连接,如图所示,在中,,,‎ ‎,‎ 由题意可知:‎ 点在轴上,点在轴上. 3分 ‎(2)过点作轴于点 ‎,‎ 在中,,‎ 点在第一象限,‎ 点的坐标为 5分 由(1)知,点在轴的正半轴上 点的坐标为 点的坐标为 6分 抛物线经过点,‎ 由题意,将,代入中得 ‎ 解得 所求抛物线表达式为: 9分 ‎(3)存在符合条件的点,点. 10分 理由如下:矩形的面积 以为顶点的平行四边形面积为.‎ 由题意可知为此平行四边形一边,‎ 又 边上的高为2 11分 依题意设点的坐标为 点在抛物线上 解得,,‎ ‎,‎ 以为顶点的四边形是平行四边形,‎ y x O D E C F A B M ‎,,‎ 当点的坐标为时,‎ 点的坐标分别为,;‎ 当点的坐标为时,‎ 点的坐标分别为,. 14分 ‎(以上答案仅供参考,如有其它做法,可参照给分)‎ ‎19. 解:(1)在中,令 x y A B C E M D P N O ‎,‎ ‎, 1分 又点在上 的解析式为 2分 ‎(2)由,得 4分 ‎,‎ ‎, 5分 ‎ 6分 ‎(3)过点作于点 ‎ 7分 ‎ 8分 由直线可得:‎ 在中,,,则 ‎, 9分 ‎ 10分 ‎ 11分 此抛物线开口向下,当时,‎ 当点运动2秒时,的面积达到最大,最大为. ‎ ‎20. 解:(1)如图,过点B作BD⊥OA于点D. ‎ ‎ 在Rt△ABD中,‎ ‎ ∵∣AB∣=,sin∠OAB=,‎ ‎ ∴∣BD∣=∣AB∣·sin∠OAB ‎ =×=3.‎ 又由勾股定理,得 ‎ ‎ ‎ ‎ ‎∴∣OD∣=∣OA∣-∣AD∣=10-6=4.‎ ‎∵点B在第一象限,∴点B的坐标为(4,3). ……3分 设经过O(0,0)、C(4,-3)、A(10,0)三点的抛物线的函数表达式为 ‎ y=ax2+bx(a≠0).‎ 由 ‎∴经过O、C、A三点的抛物线的函数表达式为 ……2分 ‎(2)假设在(1)中的抛物线上存在点P,使以P、O、C、A为顶点的四边形为梯形 ‎ ①∵点C(4,-3)不是抛物线的顶点,‎ ‎∴过点C做直线OA的平行线与抛物线交于点P1 .‎ 则直线CP1的函数表达式为y=-3.‎ 对于,令y=-3x=4或x=6.‎ ‎∴‎ 而点C(4,-3),∴P1(6,-3).‎ 在四边形P1AOC中,CP1∥OA,显然∣CP1∣≠∣OA∣.‎ ‎∴点P1(6,-3)是符合要求的点. ……1分 ‎②若AP2∥CO.设直线CO的函数表达式为 ‎ 将点C(4,-3)代入,得 ‎∴直线CO的函数表达式为 ‎ 于是可设直线AP2的函数表达式为 将点A(10,0)代入,得 ‎∴直线AP2的函数表达式为 由,即(x-10)(x+6)=0.‎ ‎∴‎ 而点A(10,0),∴P2(-6,12).‎ 过点P2作P2E⊥x轴于点E,则∣P2E∣=12.‎ 在Rt△AP2E中,由勾股定理,得 而∣CO∣=∣OB∣=5.‎ ‎∴在四边形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.‎ ‎∴点P2(-6,12)是符合要求的点. ……1分 ‎③若OP3∥CA,设直线CA的函数表达式为y=k2x+b2‎ ‎ 将点A(10,0)、C(4,-3)代入,得 ‎∴直线CA的函数表达式为 ‎∴直线OP3的函数表达式为 由即x(x-14)=0.‎ ‎∴‎ 而点O(0,0),∴P3(14,7).‎ 过点P3作P3E⊥x轴于点E,则∣P3E∣=7.‎ 在Rt△OP3E中,由勾股定理,得 而∣CA∣=∣AB∣=.‎ ‎∴在四边形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.‎ ‎∴点P3(14,7)是符合要求的点. ……1分 综上可知,在(1)中的抛物线上存在点P1(6,-3)、P2(-6,12)、P3(14,7),‎ 使以P、O、C、A为顶点的四边形为梯形. ……1分 ‎(3)由题知,抛物线的开口可能向上,也可能向下.‎ ‎ ①当抛物线开口向上时,则此抛物线与y轴的副半轴交与点N.‎ 可设抛物线的函数表达式为(a>0).‎ 即 如图,过点M作MG⊥x轴于点G.‎ ‎∵Q(-2k,0)、R(5k,0)、G(、N(0,-10ak2)、M ‎∴‎ ‎ ‎ ‎ ‎ ‎∴ ……2分 ‎②当抛物线开口向下时,则此抛物线与y轴的正半轴交于点N,‎ ‎ 同理,可得 ……1分 综上所知,的值为3:20. ……1分 ‎21.解:‎ ‎(1)m=-5,n=-3‎ ‎ (2)y=x+2‎ ‎(3)是定值.‎ 因为点D为∠ACB的平分线,所以可设点D到边AC,BC的距离均为h,‎ 设△ABC AB边上的高为H,‎ 则利用面积法可得:‎ ‎(CM+CN)h=MN﹒H 又 H=‎ 化简可得 (CM+CN)﹒‎ 故 ‎ ‎22. 解:( 1)由已知得:解得 c=3,b=2‎ ‎∴抛物线的线的解析式为 ‎(2)由顶点坐标公式得顶点坐标为(1,4)‎ 所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)‎ 设对称轴与x轴的交点为F 所以四边形ABDE的面积=‎ ‎=‎ ‎=‎ ‎=9‎ ‎(3)相似 如图,BD=‎ BE=‎ DE=‎ 所以, 即: ,所以是直角三角形 所以,且,‎ 所以.‎ ‎23. 解(Ⅰ)当,时,抛物线为,‎ 方程的两个根为,. ‎ ‎∴该抛物线与轴公共点的坐标是和. 2分 ‎(Ⅱ)当时,抛物线为,且与轴有公共点.‎ 对于方程,判别式≥0,有≤. 3分 ‎①当时,由方程,解得.‎ 此时抛物线为与轴只有一个公共点. 4分 ‎②当时, ‎ 时,,‎ 时,.‎ 由已知时,该抛物线与轴有且只有一个公共点,考虑其对称轴为,‎ 应有 即 解得.‎ 综上,或. 6分 ‎(Ⅲ)对于二次函数,‎ 由已知时,;时,,‎ 又,∴.‎ 于是.而,∴,即.‎ ‎∴. 7分 ‎∵关于的一元二次方程的判别式 ‎, ‎ x ‎∴抛物线与轴有两个公共点,顶点在轴下方. 8分 又该抛物线的对称轴,‎ 由,,,‎ 得,‎ ‎∴.‎ 又由已知时,;时,,观察图象,‎ 可知在范围内,该抛物线与轴有两个公共点. 10分 ‎24. 解:(1)∵点在上,‎ ‎∴,‎ ‎∴,‎ ‎∴.‎ ‎(2)连结, 由题意易知,‎ ‎∴.‎ ‎(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆.‎ 第一种情况:当b>2a时,存在最大值及最小值;‎ 因为的边,故当F点到BD的距离取得最大、最小值时,取得最大、最小值.‎ 如图②所示时, ‎ 的最大值=‎ 的最小值=‎ 第二种情况:当b=2a时,存在最大值,不存在最小值;‎ 的最大值=.(如果答案为‎4a2或b2也可)‎ F1‎ O D C A B G F E F2‎ ‎25. 解:(1)取中点,联结,‎ 为的中点,,. (1分)‎ 又,. (1分)‎ ‎,得; (2分)(1分)‎ ‎(2)由已知得. (1分)‎ 以线段为直径的圆与以线段为直径的圆外切,‎ ‎,即. (2分)‎ 解得,即线段的长为; (1分)‎ ‎(3)由已知,以为顶点的三角形与相似,‎ 又易证得. (1分)‎ 由此可知,另一对对应角相等有两种情况:①;②.‎ ‎①当时,,..‎ ‎,易得.得; (2分)‎ ‎②当时,,.‎ ‎.又,.‎ ‎,即,得.‎ 解得,(舍去).即线段的长为2. (2分)‎ 综上所述,所求线段的长为8或2.‎ ‎26. 解:方案一:由题意可得:,‎ 点到甲村的最短距离为. (1分)‎ 点到乙村的最短距离为.‎ 将供水站建在点处时,管道沿铁路建设的长度之和最小.‎ 即最小值为. (3分)‎ 方案二:如图①,作点关于射线的对称点,则,连接交于点,则.‎ ‎,. (4分)‎ 在中,‎ ‎,,‎ ‎,两点重合.即过点. (6分)‎ 在线段上任取一点,连接,则.‎ ‎,‎ 把供水站建在乙村的点处,管道沿线路铺设的长度之和最小.‎ M A E C D B F 甲村 东 北 M A E C D B F ‎(第25题答案图①)‎ A G H ‎(第25题答案图②)‎ P O O N 即最小值为. (7分)‎ 方案三:作点关于射线的对称点,连接,则.‎ 作于点,交于点,交于点,‎ 为点到的最短距离,即.‎ 在中,,,‎ ‎..‎ ‎,两点重合,即过点.‎ 在中,,. (10分)‎ 在线段上任取一点,过作于点,连接.‎ 显然.‎ 把供水站建在甲村的处,管道沿线路铺设的长度之和最小.‎ 即最小值为. (11分)‎ 综上,,供水站建在处,所需铺设的管道长度最短. (12分)‎ ‎27. 解:(1)由题意:BP=tcm,AQ=2tcm,则CQ=(4-2t)cm,‎ ‎∵∠C=90°,AC=‎4cm,BC=‎3cm,∴AB=‎‎5cm ‎∴AP=(5-t)cm,‎ ‎∵PQ∥BC,∴△APQ∽△ABC,‎ ‎∴AP∶AB=AQ∶AC,即(5-t)∶5=2t∶4,解得:t=‎ ‎∴当t为秒时,PQ∥BC ‎………………2分 ‎(2)过点Q作QD⊥AB于点D,则易证△AQD∽△ABC ‎∴AQ∶QD=AB∶BC ‎∴2t∶DQ=5∶3,∴DQ=‎ ‎∴△APQ的面积:×AP×QD=(5-t)×‎ ‎∴y与t之间的函数关系式为:y=‎ ‎………………5分 ‎(3)由题意:‎ ‎ 当面积被平分时有:=××3×4,解得:t=‎ ‎ 当周长被平分时:(5-t)+2t=t+(4-2t)+3,解得:t=1‎ ‎∴不存在这样t的值 ‎………………8分 ‎(4)过点P作PE⊥BC于E ‎ 易证:△PAE∽△ABC,当PE=QC时,△PQC为等腰三角形,此时△QCP′为菱形 ‎∵△PAE∽△ABC,∴PE∶PB=AC∶AB,∴PE∶t=4∶5,解得:PE=‎ ‎∵QC=4-2t,∴2×=4-2t,解得:t=‎ ‎∴当t=时,四边形PQP′C为菱形 此时,PE=,BE=,∴CE=‎ ‎………………10分 在Rt△CPE中,根据勾股定理可知:PC===‎ ‎∴此菱形的边长为cm ………………12分 ‎28. 解:(1)∵D(-8,0),∴B点的横坐标为-8,代入中,得y=-2.‎ ‎∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2)‎ 从而k=8×2=16‎ ‎(2)∵N(0,-n),B是CD的中点,A,B,M,E四点均在双曲线上,‎ ‎∴mn=k,B(-‎2m,-),C(-‎2m,-n),E(-m,-n)‎ ‎=2mn=2k,=mn=k,=mn=k.‎ ‎∴=――=k.∴k=4.‎ 由直线及双曲线,得A(4,1),B(-4,-1)‎ ‎∴C(-4,-2),M(2,2)‎ 设直线CM的解析式是,由C、M两点在这条直线上,得 ‎,解得a=b=‎ ‎∴直线CM的解析式是y=x+.‎ ‎(3)如图,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1,M1‎ 设A点的横坐标为a,则B点的横坐标为-a.于是,‎ 同理 ‎∴p-q=-=-2‎ ‎29. 解:(1)将图1中的正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为,每个转发装置都能完全覆盖一个小正方形区域,故安装4个这种装置可以达到预设的要求.‎ ‎ (3分)(图案设计不唯一)‎ ‎(2)将原正方形分割成如图2中的3个矩形,使得.将每个装置安装在这些矩形的对角线交点处,设,则,.‎ 由,得,‎ ‎,,‎ 即如此安装3个这种转发装置,也能达到预设要求. (6分)‎ 或:将原正方形分割成如图2中的3个矩形,使得,是的中点,将每个装置安装在这些矩形的对角线交点处,则,, ,即如此安装三个这个转发装置,能达到预设要求. (6分)‎ 要用两个圆覆盖一个正方形,则一个圆至少要经过正方形相邻两个顶点.如图3,用一个直径为31的去覆盖边长为30的正方形,设经过,与交于,连,则,这说明用两个直径都为31的圆不能完全覆盖正方形.‎ 所以,至少要安装3个这种转发装置,才能达到预设要求. (8分)‎ 评分说明:示意图(图1、图2、图3)每个图1分.‎ B F D A E H O 图2‎ 图3‎ D C F B E A O A D C B 图1‎ ‎ ‎ ‎30解:(1);,.‎ ‎(2)设存在实数,使抛物线上有一点,满足以为顶点的三角形与等腰直角相似.‎ 以为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以为直角边的等腰直角三角形,另一类是以为斜边的等腰直角三角形.‎ ‎①若为等腰直角三角形的直角边,则.‎ 由抛物线得:,.‎ ‎,.的坐标为.‎ D x y N O M P A C B H 把代入抛物线解析式,得.‎ 抛物线解析式为.‎ 即.‎ ‎②若为等腰直角三角形的斜边,‎ 则,.‎ 的坐标为.‎ 把代入抛物线解析式,得.‎ 抛物线解析式为,即 当时,在抛物线上存在一点满足条件,如果此抛物线上还有满足条件的点,不妨设为点,那么只有可能是以为斜边的等腰直角三角形,由此得,显然不在抛物线上,因此抛物线上没有符合条件的其他的点.‎ 当时,同理可得抛物线上没有符合条件的其他的点.‎ 当的坐标为,对应的抛物线解析式为时,‎ 和都是等腰直角三角形,.‎ 又,.‎ ‎,,总满足.‎ 当的坐标为,对应的抛物线解析式为时,‎ 同理可证得:,总满足 ‎31. 解:(1)如图所示: 4分 A A B B C C ‎(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分)‎ ‎(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; 6分 若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆. 8分 G H E F M ‎(3)此中转站应建在的外接圆圆心处(线段的垂直平分线与线段的垂直平分线的交点处). 10分 理由如下:‎ 由,‎ ‎,,‎ 故是锐角三角形,‎ 所以其最小覆盖圆为的外接圆,‎ 设此外接圆为,直线与交于点,‎ 则.‎ 故点在内,从而也是四边形的最小覆盖圆.‎ 所以中转站建在的外接圆圆心处,能够符合题中要求.‎ ‎ 12分