- 916.31 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2013年中考二次函数压轴题精选
1、(绵阳市2013年)A
B
C
D
O
x
y
l
如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,-2),交x轴于A、B两点,其中A(-1,0),直线l:x=m(m>1)与x轴交于D。
(1)求二次函数的解析式和B的坐标;
(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);
(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使△BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由。
解:(1)①二次函数y=ax2+bx+c图象的顶点C的坐标为(0,-2),c = -2 , - , b=0 ,
点A(-1,0)、点B是二次函数y=ax2-2 的图象与x轴的交点,a-2=0,a=2. 二次函数的解析式为y=2x2-2;
②点B与点A(-1,0)关于直线x=0对称,点B的坐标为(1,0);
(2)∠BOC=∠PDB=90º,点P在直线x=m上,
设点P的坐标为(m,p), OB=1, OC=2, DB= m-1 , DP=|p| ,
①当△BOC∽△PDB时,,,p= 或p = ,
点P的坐标为(m,)或(m,);
②当△BOC∽△BDP时, ,,p=2m-2或p=2-2m,
点P的坐标为(m,2m-2)或(m,2-2m);
综上所述点P的坐标为(m,)、(m,)、(m,2m-2)或(m,2-2m);
(3)不存在满足条件的点Q。
点Q在第一象限内的抛物线y=2x2-2上,
令点Q的坐标为(x, 2x2-2),x>1, 过点Q作QE⊥直线l ,
垂足为E,△BPQ为等腰直角三角形,PB=PQ,∠PEQ=∠PDB,
∠EPQ=∠DBP,△PEQ≌△BDP,QE=PD,PE=BD,
① 当P的坐标为(m,)时,
m-x = , m=0 m=1
2x2-2- = m-1, x= x=1
与x>1矛盾,此时点Q不满足题设条件;
① 当P的坐标为(m,)时,
x-m= m=- m=1
2x2-2- = m-1, x=- x=1
与x>1矛盾,此时点Q不满足题设条件;
② 当P的坐标为(m,2m-2)时,
m-x =2m-2 m= m=1
2x2-2-(2m-2) = m-1, x=- x=1
与x>1矛盾,此时点Q不满足题设条件;
④当P的坐标为(m,2-2m)时,
x- m = 2m-2 m= m=1
2x2-2-(2-2m) = m-1 x=- x=1
与x>1矛盾,此时点Q不满足题设条件;
综上所述,不存在满足条件的点Q。
2、(2013•昆明压轴题)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),
设抛物线解析式为y=a(x﹣2)2+3,
将A(4,0)坐标代入得:0=4a+3,即a=﹣,
则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;
(2)设直线AC解析式为y=kx+b(k≠0),
将A(4,0)与C(0,3)代入得:,
解得:,
故直线AC解析式为y=﹣x+3,
与抛物线解析式联立得:,
解得:或,
则点D坐标为(1,);
(3)存在,分两种情况考虑:
①当点M在x轴上方时,如答图1所示:
四边形ADMN为平行四边形,DM∥AN,DM=AN,
由对称性得到M(3,),即DM=2,故AN=2,
∴N1(2,0),N2(6,0);
②当点M在x轴下方时,如答图2所示:
过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,
∴MP=DQ=,NP=AQ=3,
将yM=﹣代入抛物线解析式得:﹣=﹣x2+3x,
解得:xM=2﹣或xM=2+,
∴xN=xM﹣3=﹣﹣1或﹣1,
∴N3(﹣﹣1,0),N4(﹣1,0).
综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).
3、(2013陕西)(第24题图)
y
-1
O
x
2
-1
1
1
2
3
-2
3
在平面直角坐标系中,一个二次函灵敏的图象经过点A(1,0)、B(3,0)两点.
(1)写出这个二次函数的对称轴;
(2)设这个二次函数的顶点为D,与y轴交于点C,
它的对称轴与x轴交于点E,连接AD、DE和DB,
当△AOC与△DEB相似时,求这个二次函数的表达式。
解:(1)对称轴为直线:x=2。
(2)∵A(1,0)、B(3,0),所以设即
当x=0时,y=3a,当x=2时,y=
∴C(0,3a),D(2,-a) ∴OC=|3a|,
∵A(1,0)、E(2,0),
∴OA=1,EB=1,DE=}-a|=|a|
在△AOC与△DEB中,
∵∠AOC=∠DEB=90°
∴当时,△AOC∽△DEB
∴时,解得或
当时,△AOC∽△BED
∴时,此方程无解,
综上所得:所求二次函数的表达式为:
或
4、(2013年潍坊市压轴题)如图,抛物线关于直线对称,与坐标轴交于三点,且,点在抛物线上,直线是一次函数的图象,点是坐标原点.
(1)求抛物线的解析式;
(2)若直线平分四边形的面积,求的值.
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于两点,问在轴正半轴上是否存在一定点,使得不论取何值,直线与总是关于轴对称?若存在,求出点坐标;若不存在,请说明理由.
答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),
由点D(2,1.5)在抛物线上,所以,所以3a+3b=1.5,即a+b=0.5,
又,即b=-2a,代入上式解得a=-0.5,b=1,从而c=1.5,所以.
(2)由(1)知,令x=0,得c(0,1.5),所以CD//AB,
令kx-2=1.5,得l与CD的交点F(),
令kx-2=0,得l与x轴的交点E(),
根据S四边形OEFC=S四边形EBDF得:OE+CF=DF+BE,
即:
(3)由(1)知
所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为
假设在y轴上存在一点P(0,t),t>0,使直线PM与PN关于y轴对称,过点M、N分别向y轴作垂线MM1、NN1,垂足分别为M1、N1,因为∠MPO=∠NPO,所以Rt△MPM1∽Rt△NPN1,
所以,………………(1)
不妨设M(xM,yM)在点N(xN,yN)的左侧,因为P点在y轴正半轴上,
则(1)式变为,又yM =k xM-2, yN=k xN-2,
所以(t+2)(xM +xN)=2k xM xN,……(2)
把y=kx-2(k≠0)代入中,整理得x2+2kx-4=0,
所以xM +xN=-2k, xM xN=-4,代入(2)得t=2,符合条件,
故在y轴上存在一点P(0,2),使直线PM与PN总是关于y轴对称.
5、(2013•新疆压轴题)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.
解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),
∴,解得,
所以,抛物线的解析式为y=x2﹣4x+3;
(2)∵点A、B关于对称轴对称,
∴点D为AC与对称轴的交点时△BCD的周长最小,
设直线AC的解析式为y=kx+b(k≠0),
则,
解得,
所以,直线AC的解析式为y=x﹣1,
∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线的对称轴为直线x=2,
当x=2时,y=2﹣1=1,
∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;
(3)如图,设过点E与直线AC平行线的直线为y=x+m,
联立,
消掉y得,x2﹣5x+3﹣m=0,
△=(﹣5)2﹣4×1×(3﹣m)=0,
即m=﹣时,点E到AC的距离最大,△ACE的面积最大,
此时x=,y=﹣,
∴点E的坐标为(,﹣),
设过点E的直线与x轴交点为F,则F(,0),
∴AF=﹣1=,
∵直线AC的解析式为y=x﹣1,
∴∠CAB=45°,
∴点F到AC的距离为×=,
又∵AC==3,
∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).
6、(2013凉山州压轴题)如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)
上平行移动,分别交x轴于点E,交CD于点F,交
AC于点M,交抛物线于点P,若点M的横坐标为m,
请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛
物线部分是否存在这样的点P,使得以P、C、F为顶
点的三角形和△AEM相似?若存在,求出此时m的
值,并直接判断△PCM的形状;若不存在,请说明理由.
解答:解:(1)∵抛物线y=ax2﹣2ax+c(a≠0)经过点A(3,0),点C(0,4),
∴,解得,
∴抛物线的解析式为y=﹣x2+x+4;
(2)设直线AC的解析式为y=kx+b,
∵A(3,0),点C(0,4),
∴,解得,
∴直线AC的解析式为y=﹣x+4.
∵点M的横坐标为m,点M在AC上,
∴M点的坐标为(m,﹣ m+4),
∵点P的横坐标为m,点P在抛物线y=﹣x2+x+4上,
∴点P的坐标为(m,﹣ m2+m+4),
∴PM=PE﹣ME=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+4m,
即PM=﹣m2+4m(0<m<3);
(3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:由题意,可得AE=3﹣m,EM=﹣m+4,CF=m,PF=﹣m2+m+4﹣4=﹣m2+m.
若以P、C、F为顶点的三角形和△AEM相似,分两种情况:①若△PFC∽△AEM,则PF:AE=FC:EM,
即(﹣m2+m):(3﹣m)=m:(﹣ m+4),
∵m≠0且m≠3,
∴m=.
∵△PFC∽△AEM,∴∠PCF=∠AME,
∵∠AME=∠CMF,∴∠PCF=∠CMF.
在直角△CMF中,∵∠CMF+∠MCF=90°,
∴∠PCF+∠MCF=90°,即∠PCM=90°,
∴△PCM为直角三角形;
②若△CFP∽△AEM,则CF:AE=PF:EM,
即m:(3﹣m)=(﹣m2+m):(﹣m+4),
∵m≠0且m≠3,
∴m=1.
∵△CFP∽△AEM,∴∠CPF=∠AME,
∵∠AME=∠CMF,∴∠CPF=∠CMF.
∴CP=CM,
∴△PCM为等腰三角形.
综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
7、(2013•曲靖压轴题)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.
(1)求抛物线的解析式.
(2)当DE=4时,求四边形CAEB的面积.
(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.
解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,
∴A(﹣4,0),B(0,4).
∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,
∴,
解得:b=﹣3,c=4,
∴抛物线的解析式为:y=﹣x2﹣3x+4.
(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.
∵OA=OB=4,∴∠BAC=45°,
∴△ACD为等腰直角三角形,∴CD=AC=4+m,
∴CE=CD+DE=4+m+4=8+m,
∴点E坐标为(m,8+m).
∵点E在抛物线y=﹣x2﹣3x+4上,
∴8+m=﹣m2﹣3m+4,解得m=﹣2.
∴C(﹣2,0),AC=OC=2,CE=6,
S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.
(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).
∵△ACD为等腰直角三角形,△DBE和△DAC相似
∴△DBE必为等腰直角三角形.
i)若∠BED=90°,则BE=DE,
∵BE=OC=﹣m,
∴DE=BE=﹣m,X Kb1. Co m
∴CE=4+m﹣m=4,
∴E(m,4).
∵点E在抛物线y=﹣x2﹣3x+4上,
∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,
∴D(﹣3,1);
ii)若∠EBD=90°,则BE=BD=﹣m,
在等腰直角三角形EBD中,DE=BD=﹣2m,
∴CE=4+m﹣2m=4﹣m,
∴E(m,4﹣m).
∵点E在抛物线y=﹣x2﹣3x+4上,
∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,
∴D(﹣2,2).
综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).11、8、(2013年临沂压轴题)如图,抛物线经过三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
x
y
A
O
C
B
(第26题图)
解析:解:(1)设抛物线的解析式为 ,
x
y
A
O
C
B
(第26题图)
P
N
M
H
根据题意,得,
解得
∴抛物线的解析式为:
(2)由题意知,点A关于抛物线对称轴的对称点为点B,连接BC交抛物线的对称轴于点P,则P点 即为所求.
设直线BC的解析式为,由题意,得解得
∴直线BC的解析式为
∵抛物线的对称轴是,∴当时,
∴点P的坐标是.
(3)存在
(i)当存在的点N在x轴的下方时,如图所示,∵四边形ACNM是平行四边形,∴CN∥x轴,∴点C与点N关于对称轴x=2对称,∵C点的坐标为,∴点N的坐标为
(II)当存在的点在x轴上方时,如图所示,作轴于点H,∵四边形是平行四边形,∴,
∴Rt△CAO ≌Rt△,∴.
∵点C的坐标为,即N点的纵坐标为,
∴即
解得
∴点的坐标为和.
综上所述,满足题目条件的点N共有三个,
分别为,,
9、(2013•宁波压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.
(1)求直线AB的函数解析式;
(2)当点P在线段AB(不包括A,B两点)上时.
①求证:∠BDE=∠ADP;
②设DE=x,DF=y.请求出y关于x的函数解析式;
(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.
解:(1)设直线AB的函数解析式为y=kx+4,
代入(4,0)得:4k+4=0,
解得:k=﹣1,
则直线AB的函数解析式为y=﹣x+4;
(2)①由已知得:
OB=OC,∠BOD=∠COD=90°,
又∵OD=OD,
∴△BOD≌△COD,
∴∠BOD=∠CDO,
∵∠CDO=∠ADP,
∴∠BDE=∠ADP,
②连结PE,
∵∠ADP是△DPE的一个外角,∴∠ADP=∠DEP+∠DPE,
∵∠BDE是△ABD的一个外角,∴∠BDE=∠ABD+∠OAB,
∵∠ADP=∠BDE,∠DEP=∠ABD,∴∠DPE=∠OAB,
∵OA=OB=4,∠AOB=90°,∴∠OAB=45°,∴∠DPE=45°,∴∠DFE=∠DPE=45°,
∵DF是⊙Q的直径,∴∠DEF=90°,∴△DEF是等腰直角三角形,
∴DF=DE,即y=x;
(3)当BD:BF=2:1时,
过点F作FH⊥OB于点H,
∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,∴∠DBO=∠BFH,
又∵∠DOB=∠BHF=90°,∴△BOD∽△FHB,∴===2,∴FH=2,OD=2BH,
∵∠FHO=∠EOH=∠OEF=90°,∴四边形OEFH是矩形,
∴OE=FH=2,∴EF=OH=4﹣OD,
∵DE=EF,∴2+OD=4﹣OD,
解得:OD=,∴点D的坐标为(0,),
∴直线CD的解析式为y=x+,由得:,
则点P的坐标为(2,2);当=时,
连结EB,同(2)①可得:∠ADB=∠EDP,
而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,
∵∠DEP=∠DPA,∴∠DBE=∠DAP=45°,∴△DEF是等腰直角三角形,
过点F作FG⊥OB于点G,
同理可得:△BOD∽△FGB,∴===,
∴FG=8,OD=BG,
∵∠FGO=∠GOE=∠OEF=90°,∴四边形OEFG是矩形,
∴OE=FG=8,∴EF=OG=4+2OD,
∵DE=EF,∴8﹣OD=4+2OD,OD=,
∴点D的坐标为(0,﹣),
直线CD的解析式为:y=﹣x﹣,
由得:,
∴点P的坐标为(8,﹣4),
综上所述,点P的坐标为(2,2)或(8,﹣4).
10、(2013四川宜宾压轴题)如图,抛物线y1=x2﹣1交x轴的正半轴于点A,交y轴于点B,将此抛物线向右平移4个单位得抛物线y2,两条抛物线相交于点C.
(1)请直接写出抛物线y2的解析式;
(2)若点P是x轴上一动点,且满足∠CPA=∠OBA,求出所有满足条件的P点坐标;
(3)在第四象限内抛物线y2上,是否存在点Q,使得△QOC中OC边上的高h有最大值?若存在,请求出点Q的坐标及h的最大值;若不存在,请说明理由.
解:(1)抛物线y1=x2﹣1向右平移4个单位的顶点坐标为(4,﹣1),
所以,抛物线y2的解析式为y2=(x﹣4)2﹣1;
(2)x=0时,y=﹣1,
y=0时,x2﹣1=0,解得x1=1,x2=﹣1,
所以,点A(1,0),B(0,﹣1),
∴∠OBA=45°,
联立,解得, ∴点C的坐标为(2,3),
∵∠CPA=∠OBA,∴点P在点A的左边时,坐标为(﹣1,0),
在点A的右边时,坐标为(5,0),
所以,点P的坐标为(﹣1,0)或(5,0);
(3)存在.
∵点C(2,3),
∴直线OC的解析式为y=x,
设与OC平行的直线y=x+b,联立,
消掉y得,2x2﹣19x+30﹣2b=0,
当△=0,方程有两个相等的实数根时,△QOC中OC边上的高h有最大值,
此时x1=x2=×(﹣)=,
此时y=(﹣4)2﹣1=﹣,
∴存在第四象限的点Q(,﹣),使得△QOC中OC边上的高h有最大值,
此时△=192﹣4×2×(30﹣2b)=0 解得b=﹣,
∴过点Q与OC平行的直线解析式为y=x﹣,
令y=0,则x﹣=0,解得x=,
设直线与x轴的交点为E,则E(,0),
过点C作CD⊥x轴于D,根据勾股定理,OC==,
则sin∠COD==,
解得h最大=×=.
11、(2013•广安压轴题)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.
①动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
②连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变.当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(结果保留根号)
解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),C(1,0),
∴,解得,所以,抛物线的解析式为y=﹣x2﹣2x+3;
(2)①∵A(﹣3,0),B(0,3),∴OA=OB=3,
∴△AOB是等腰直角三角形,∴∠BAO=45°,
∵PF⊥x轴,∴∠AEF=90°﹣45°=45°,
又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PD越大,△PDE的周长越大,
易得直线AB的解析式为y=x+3,
设与AB平行的直线解析式为y=x+m,联立,
消掉y得,x2+3x+m﹣3=0,
当△=32﹣4×1×(m﹣3)=0,
即m=时,直线与抛物线只有一个交点,PD最长,
此时x=﹣,y=﹣+=,
∴点P(﹣,)时,△PDE的周长最大;
②抛物线y=﹣x2﹣2x+3的对称轴为直线x=﹣=﹣1,
(i)如图1,点M在对称轴上时,过点P作PQ⊥对称轴于Q,
在正方形APMN中,AP=PM,∠APM=90°,
∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°,
∴∠APF=∠QPM,
∵在△APF和△MPQ中,,
∴△APF≌△MPQ(AAS),
∴PF=PQ,
设点P的横坐标为n(n<0),则PQ=﹣1﹣n,
即PF=﹣1﹣n,
∴点P的坐标为(n,﹣1﹣n),
∵点P在抛物线y=﹣x2﹣2x+3上,
∴﹣n2﹣2n+3=﹣1﹣n,
整理得,n2+n﹣4=0,
解得n1=(舍去),n2=,
﹣1﹣n=﹣1﹣=,
所以,点P的坐标为(,);
(ii)如图2,点N在对称轴上时,设抛物线对称轴与x轴交于点Q,
∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,∴∠FPA=∠QAN,
又∵∠PFA=∠AQN=90°,PA=AN,∴△APF≌△NAQ,∴PF=AQ,
设点P坐标为P(x,﹣x2﹣2x+3),
则有﹣x2﹣2x+3=﹣1﹣(﹣3)=2,
解得x=﹣1(不合题意,舍去)或x=﹣﹣1,
此时点P坐标为(﹣﹣1,2).
综上所述,当顶点M恰好落在抛物线对称轴上时,点P坐标为(,),当顶点N恰好落在抛物线对称轴上时,点P的坐标为(﹣﹣1,2).
12、(2013•绍兴压轴题)抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.
(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E.
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.
解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),
∴当y=0时,(x﹣3)(x+1)=0,
解得x=3或﹣1,
∴点B的坐标为(3,0).
∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,
∴顶点D的坐标为(1,﹣4);
(2)①如右图.
∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,
∴C点坐标为(0,﹣3).
∵对称轴为直线x=1,
∴点E的坐标为(1,0).
连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),
∴CH=DH=1,
∴∠CDH=∠BCO=∠BCH=45°,
∴CD=,CB=3,△BCD为直角三角形.
分别延长PC、DC,与x轴相交于点Q,R.
∵∠BDE=∠DCP=∠QCR,
∠CDB=∠CDE+∠BDE=45°+∠DCP,
∠QCO=∠RCO+∠QCR=45°+∠DCP,
∴∠CDB=∠QCO,
∴△BCD∽△QOC,
∴==,
∴OQ=3OC=9,即Q(﹣9,0).
∴直线CQ的解析式为y=﹣x﹣3,
直线BD的解析式为y=2x﹣6.
由方程组,解得.
∴点P的坐标为(,﹣);
②(Ⅰ)当点M在对称轴右侧时.
若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.
∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN∽△DBE,
∴==,
∴MN=2CN.
设CN=a,则MN=2a.
∵∠CDE=∠DCF=45°,
∴△CNF,△MGF均为等腰直角三角形,
∴NF=CN=a,CF=a,
∴MF=MN+NF=3a,
∴MG=FG=a,
∴CG=FG﹣FC=a,
∴M(a,﹣3+a).
代入抛物线y=(x﹣3)(x+1),解得a=,
∴M(,﹣);
若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.
∵∠CMN=∠BDE,∠CNM=∠BED=90°,
∴△MCN∽△DBE,
∴==,
∴MN=2CN.
设CN=a,则MN=2a.
∵∠CDE=45°,
∴△CNF,△MGF均为等腰直角三角形,
∴NF=CN=a,CF=a,
∴MF=MN﹣NF=a,
∴MG=FG=a,
∴CG=FG+FC=a,
∴M(a,﹣3+a).
代入抛物线y=(x﹣3)(x+1),解得a=5,
∴M(5,12);
(Ⅱ)当点M在对称轴左侧时.
∵∠CMN=∠BDE<45°,
∴∠MCN>45°,
而抛物线左侧任意一点K,都有∠KCN<45°,
∴点M不存在.
综上可知,点M坐标为(,﹣)或(5,12).
13、(2013•嘉兴压轴题)如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.
(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?
解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,
∴点B的坐标为(0,2).
(2)延长EA,交y轴于点F,
∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,
∴△AFC≌△AED,∴AF=AE,
∵点A(m,﹣ m2+m),点B(0,m),
∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,
∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,
∴△ABF∽△DAE,
∴=,即:=,
∴DE=4.
(3)①∵点A的坐标为(m,﹣ m2+m),
∴点D的坐标为(2m,﹣ m2+m+4),
∴x=2m,y=﹣m2+m+4,
∴y=﹣•++4,
∴所求函数的解析式为:y=﹣x2+x+4,
②作PQ⊥DE于点Q,则△DPQ≌△BAF,
(Ⅰ)当四边形ABDP为平行四边形时(如图1),
点P的横坐标为3m,
点P的纵坐标为:(﹣ m2+m+4)﹣(m2)=﹣m2+m+4,
把P(3m,﹣ m2+m+4)的坐标代入y=﹣x2+x+4得:
﹣m2+m+4=﹣×(3m)2+×(3m)+4,
解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.
(Ⅱ)当四边形ABDP为平行四边形时(如图2),
点P的横坐标为m,
点P的纵坐标为:(﹣ m2+m+4)+(m2)=m+4,
把P(m,m+4)的坐标代入y=﹣x2+x+4得:
m+4=﹣m2+m+4,
解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,
综上所述:m的值为8或﹣8.
14、(2013菏泽压轴题)如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=x+3的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.
(1)试求b,c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?
解:(1)由y=﹣x+3,
令x=0,得y=3,所以点A(0,3);
令y=0,得x=4,所以点C(4,0),
∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),
又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),
将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,可得,
解得:,
故该二次函数解析式为:y=x2﹣x﹣3.
(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,
∵PQ⊥AC,∴△APQ∽△CAO,∴=,即=,解得:t=.
即当点P运动到距离A点个单位长度处,有PQ⊥AC.
②∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=×8×3=12,
∴当△APQ的面积最大时,四边形PDCQ的面积最小,
当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,
设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO可得: =,
解得:h=(5﹣t),
∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,
∴当t=时,S△APQ达到最大值,此时S四边形PDCQ=12﹣=,
故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.
15、(2013•包头压轴题)已知抛物线y=x2﹣3x﹣的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.
(1)求点A、B、C、D的坐标;
(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;
(3)取点E(﹣,0)和点F(0,﹣),直线l经过E、F两点,点G是线段BD的中点.
①点G是否在直线l上,请说明理由;
②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由.
解:(1)令y=0,则x2﹣3x﹣=0,整理得,4x2﹣12x﹣7=0,
解得x1=﹣,x2=,
所以,A(﹣,0),B(,0),
令x=0,则y=﹣,
所以,C(0,﹣),
∵﹣=﹣=,==﹣4,
∴顶点D(,﹣4);
(2)在y轴正半轴上存在符合条件的点P,设点P的坐标为(0,y),
∵A(﹣,0),C(0,﹣),
∴OA=,OC=,OP=y,
①若OA和OA是对应边,则△AOP∽△AOC,
∴=,y=OC=,此时点P(0,),
②若OA和OC是对应边,则△POA∽△AOC,
∴=,即=,解得y=,此时点P(0,),
所以,符合条件的点P有两个,P(0,)或(0,);
(3)①设直线l的解析式为y=kx+b(k≠0),
∵直线l经过点E(﹣,0)和点F(0,﹣),
∴,解得,所以,直线l的解析式为y=﹣x﹣,
∵B(,0),D(,﹣4),
(+)=,[0+(﹣4)]=﹣2,∴线段BD的中点G的坐标为(,﹣2),
当x=时,y=﹣×﹣=﹣2,
所以,点G在直线l上;
②在抛物线上存在符合条件的点M.
设抛物线的对称轴与x轴交点为H,则点H的坐标为(,0),
∵E(﹣,0)、F(0,﹣),B(,0)、D(,﹣4),
∴OE=,OF=,HD=4,HB=﹣=2,
∵==,∠OEF=∠HDB,∴△OEF∽△HDB,∴∠OFE=∠HBD,
∵∠OEF+∠OFE=90°,∴∠OEF+∠HBD=90°,
∴∠EGB=180°﹣(∠OEF+∠HBD)=180°﹣90°=90°,
∴直线l是线段BD的垂直平分线,
∴点D关于直线l的对称点就是点B,
∴点M就是直线DE与抛物线的交点,
设直线DE的解析式为y=mx+n,
∵D(,﹣4),(﹣,0),∴,解得,
所以,直线DE的解析式为y=﹣x﹣2,
联立,解得,,
∴符合条件的点M有两个,是(,﹣4)或(,﹣).
16、(2013•株洲压轴题)已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).
(1)求抛物线C1的解析式的一般形式;
(2)当m=2时,求h的值;
(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.
(1)解:设抛物线C1的顶点式形式y=a(x﹣1)2,(a≠0),
∵抛物线过点(0,),∴a(0﹣1)2=,解得a=,
∴抛物线C1的解析式为y=(x﹣1)2,一般形式为y=x2﹣x+;
(2)解:当m=2时,m2=4,
∵BC∥x轴,∴点B、C的纵坐标为4,∴(x﹣1)2=4,
解得x1=5,x2=﹣3,∴点B(﹣3,4),C(5,4),
∵点A、C关于y轴对称,∴点A的坐标为(﹣5,4),
设抛物线C2的解析式为y=(x﹣1)2﹣h,
则(﹣5﹣1)2﹣h=4,解得h=5;
(3)证明:∵直线AB与x轴的距离是m2,
∴点B、C的纵坐标为m2,∴(x﹣1)2=m2,
解得x1=1+2m,x2=1﹣2m,∴点C的坐标为(1+2m,m2),
又∵抛物线C1的对称轴为直线x=1,∴CE=1+2m﹣1=2m,
∵点A、C关于y轴对称,∴点A的坐标为(﹣1﹣2m,m2),
∴AE=ED=1﹣(﹣1﹣2m)=2+2m,
设抛物线C2的解析式为y=(x﹣1)2﹣h,则(﹣1﹣2m﹣1)2﹣h=m2,
解得h=2m+1,∴EF=h+m2=m2+2m+1,
∴tan∠EDF﹣tan∠ECP=﹣=﹣=﹣=,
∴tan∠EDF﹣tan∠ECP=.
17、(2013•张家界压轴题)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.
(1)求直线CD的解析式;
(2)求抛物线的解析式;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;
(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
解:(1)∵C(0,1),OD=OC,∴D点坐标为(1,0).
设直线CD的解析式为y=kx+b(k≠0),
将C(0,1),D(1,0)代入得:,
解得:b=1,k=﹣1,
∴直线CD的解析式为:y=﹣x+1.
(2)设抛物线的解析式为y=a(x﹣2)2+3,
将C(0,1)代入得:1=a×(﹣2)2+3,解得a=.
∴y=(x﹣2)2+3=x2+2x+1.
(3)证明:由题意可知,∠ECD=45°,
∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°,
∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称,
∴点E的坐标为(4,1).
如答图①所示,设对称轴(直线x=2)与CE交于点F,则F(2,1),
∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°.
又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°,
∴∠QEC=∠QCE=∠ODC=∠OCD=45°,
∴△CEQ∽△CDO.
(4)存在.
如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度.
(证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′.
由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′;
而F′C″+F′P′+P′C′是点C′,C″之间的折线段,
由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″,
即△P′CF′的周长大于△PCE的周长.)
如答图③所示,连接C′E,
∵C,C′关于直线QE对称,△QCE为等腰直角三角形,
∴△QC′E为等腰直角三角形,
∴△CEC′为等腰直角三角形,
∴点C′的坐标为(4,5);
∵C,C″关于x轴对称,∴点C″的坐标为(﹣1,0).
过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″===.
综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为.
18、(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
解:(1)根据题意,设抛物线的解析式为:y=a(x+1)2+k,
∵点A(1,0),B(0,3)在抛物线上,∴,解得:a=﹣1,k=4,
∴抛物线的解析式为:y=﹣(x+1)2+4.
(2)①∵四边形OMPQ为矩形,
∴OM=PQ,即3t=﹣(t+1)2+4,整理得:t2+5t﹣3=0,
解得t=,由于t=<0,故舍去,
∴当t=秒时,四边形OMPQ为矩形;
②Rt△AOB中,OA=1,OB=3,∴tanA=3.
若△AON为等腰三角形,有三种情况:
(I)若ON=AN,如答图1所示:
过点N作ND⊥OA于点D,则D为OA中点,OD=OA=,∴t=;
(II)若ON=OA,如答图2所示:
过点N作ND⊥OA于点D,设AD=x,则ND=AD•tanA=3x,OD=OA﹣AD=1﹣x,
在Rt△NOD中,由勾股定理得:OD2+ND2=ON2,
即(1﹣x)2+(3x)2=12,解得x1=,x2=0(舍去),
∴x=,OD=1﹣x=,∴t=;
(III)若OA=AN,如答图3所示:
过点N作ND⊥OA于点D,设AD=x,则ND=AD•tanA=3x,
在Rt△AND中,由勾股定理得:ND2+AD2=AN2,
即(x)2+(3x)2=12,解得x1=,x2=﹣(舍去),
∴OD=1﹣x=1﹣,∴t=1﹣.
综上所述,当t为秒、秒,(1﹣)秒时,△AON为等腰三角形.
19、(2013•郴州压轴题)如图,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O为原点,OC、OA所在直线为轴建立坐标系.抛物线顶点为A,且经过点C.点P在线段AO上由A向点O运动,点O在线段OC上由C向点O运动,QD⊥OC交BC于点D,OD所在直线与抛物线在第一象限交于点E.
(1)求抛物线的解析式;
(2)点E′是E关于y轴的对称点,点Q运动到何处时,四边形OEAE′是菱形?
(3)点P、Q分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t秒,当t为何值时,PB∥OD?
解:(1)∵A(0,2)为抛物线的顶点,∴设y=ax2+2,
∵点C(3,0),在抛物线上,∴9a+2=0,解得:a=﹣,
∴抛物线为;y=﹣x2+2;
(2)如果四边形OEAE′是菱形,则AO与EE′互相垂直平分,
∴EE′经过AO的中点,∴点E纵坐标为1,代入抛物线解析式得:1=﹣x2+2,
解得:x=±,
∵点E在第一象限,
∴点E为(,1),
设直线BC的解析式为y=kx+b,把B(1,2),C(3,0),代入得:,
解得:,
∴BC的解析式为:y=﹣x+3,将E点代入y=ax,可得出EO的解析式为:y=x,
由,得:,
∴Q点坐标为:(,0),
∴当Q点坐标为(,0)时,四边形OEAE′是菱形;
(3)法一:设t为m秒时,PB∥DO,又QD∥y轴,则有∠APB=∠AOE=∠ODQ,
又∵∠BAP=∠DQO,则有△APB∽△QDO,∴=,
由题意得:AB=1,AP=2m,QO=3﹣3m,
又∵点D在直线y=﹣x+3上,∴DQ=3m,因此:=,解得:m=,
经检验:m=是原分式方程的解,∴当t=秒时,PB∥OD.
20、(2013•常德)如图,已知二次函数的图象过点A(0,﹣3),B(,),对称轴为直线x=﹣,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=MP,MD=OM,OE=ON,NF=NP.
(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.
(1)解:设抛物线的解析式为:y=a(x+)2+k,
∵点A(0,﹣3),B(,)在抛物线上,∴,
解得:a=1,k=.∴抛物线的解析式为:y=(x+)2=x2+x﹣3.
(2)证明:如右图,连接CD、DE、EF、FC.
∵PM⊥x轴于点M,PN⊥y轴于点N,∴四边形PMON为矩形,
∴PM=ON,PN=OM.
∵PC=MP,OE=ON,∴PC=OE;
∵MD=OM,NF=NP,∴MD=NF,∴PF=OD.
在△PCF与△OED中,
∴△PCF≌△OED(SAS),
∴CF=DE.
同理可证:△CDM≌△FEN,∴CD=EF.
∵CF=DE,CD=EF,∴四边形CDEF是平行四边形.
(3)解:假设存在这样的点P,使四边形CDEF为矩形.
设矩形PMON的边长PM=ON=m,PN=OM=n,则PC=m,MC=m,MD=n,PF=n.
若四边形CDEF为矩形,则∠DCF=90°,易证△PCF∽△MDC,
∴,即,化简得:m2=n2,
∴m=n,即矩形PMON为正方形.
∴点P为抛物线y=x2+x﹣3与坐标象限角平分线y=x或y=﹣x的交点.
联立,解得,,∴P1(,),P2(﹣,﹣);
联立,解得,,
∴P3(﹣3,3),P4(﹣1,1).
∴抛物线上存在点P,使四边形CDEF为矩形.这样的点有四个,在四个坐标象限内各一个,其坐标分别为:P1(,),P2(﹣,﹣),P3(﹣3,3),P4(﹣1,1).
21、(2013•孝感压轴题)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.
(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);
(2)如图2,若点E在线段BC上滑动(不与点B,C重合).
①AE=EF是否总成立?请给出证明;
②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.
(1)解:如图1,取AB的中点G,连接EG.
△AGE与△ECF全等.
(2)①若点E在线段BC上滑动时AE=EF总成立.
证明:如图2,在AB上截取AM=EC.
∵AB=BC,∴BM=BE,
∴△MBE是等腰直角三角形,∴∠AME=180°﹣45°=135°,
又∵CF平分正方形的外角,∴∠ECF=135°,∴∠AME=∠ECF.
而∠BAE+∠AEB=∠CEF+∠AEB=90°,
∴∠BAE=∠CEF,∴△AME≌△ECF.∴AE=EF.
②过点F作FH⊥x轴于H,由①知,FH=BE=CH,
设BH=a,则FH=a﹣1,∴点F的坐标为F(a,a﹣1)
∵点F恰好落在抛物线y=﹣x2+x+1上,∴a﹣1=﹣a2+a+1,
∴a2=2,(负值不合题意,舍去),∴.
∴点F的坐标为.
22、(2013•十堰压轴题)已知抛物线y=x2﹣2x+c与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(﹣1,0).
(1)求D点的坐标;
(2)如图1,连接AC,BD并延长交于点E,求∠E的度数;
(3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.
解:(1)把x=﹣1,y=0代入y=x2﹣2x+c得:1+2+c=0∴c=﹣3
∴y=x2﹣2x﹣3=y=(x﹣1)2﹣4∴顶点坐标为(1,﹣4);
(2)如图1,连接CD、CB,过点D作DF⊥y轴于点F,
由x2﹣2x﹣3=0得x=﹣1或x=3∴B(3,0)
当x=0时,y=x2﹣2x﹣3=﹣3∴C(0,﹣3)∴OB=OC=3
∵∠BOC=90°,∴∠OCB=45°,
BC=3
又∵DF=CF=1,∠CFD=90°,∴∠FCD=45°,CD=,
∴∠BCD=180°﹣∠OCB﹣∠FCD=90°.∴∠BCD=∠COA
又∵∴△DCB∽△AOC,∴∠CBD=∠OCA
又∵∠ACB=∠CBD+∠E=∠OCA+∠OCB∴∠E=∠OCB=45°,
(3)如图2,设直线PQ交y轴于N点,交BD于H点,作DG⊥x轴于G点
∵∠PMA=45°,∴∠EMH=45°,∴∠MHE=90°,∴∠PHB=90°,
∴∠DBG+∠OPN=90°
又∴∠ONP+∠OPN=90°,∴∠DBG=∠ONP
又∵∠DGB=∠PON=90°,∴△DGB=∠PON=90°,∴△DGB∽△PON
∴即:=
∴ON=2,∴N(0,﹣2)
设直线PQ的解析式为y=kx+b则
解得:
∴y=﹣x﹣2设Q(m,n)且n<0,∴n=﹣m﹣2
又∵Q(m,n)在y=x2﹣2x﹣3上,
∴n=m2﹣2m﹣3
∴﹣m﹣2=m2﹣2m﹣3解得:m=2或m=﹣∴n=﹣3或n=﹣
∴点Q的坐标为(2,﹣3)或(﹣,﹣).
23、(2013•恩施州压轴题)如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).
(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.
解:(1)∵直线l:y=3x+3与x轴交于点A,与y轴交于点B,∴A(﹣1,0),B(0,3);
∵把△AOB沿y轴翻折,点A落到点C,∴C(1,0).
设直线BD的解析式为:y=kx+b,
∵点B(0,3),D(3,0)在直线BD上,∴,
解得k=﹣1,b=3,∴直线BD的解析式为:y=﹣x+3.
设抛物线的解析式为:y=a(x﹣1)(x﹣3),
∵点B(0,3)在抛物线上,∴3=a×(﹣1)×(﹣3),
解得:a=1,
∴抛物线的解析式为:y=(x﹣1)(x﹣3)=x2﹣4x+3.
(2)抛物线的解析式为:y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).
直线BD:y=﹣x+3与抛物线的对称轴交于点M,令x=2,得y=1,∴M(2,1).
设对称轴与x轴交点为点F,则CF=FD=MN=1,
∴△MCD为等腰直角三角形.
∵以点N、B、D为顶点的三角形与△MCD相似,∴△BND为等腰直角三角形.
如答图1所示:
(I)若BD为斜边,则易知此时直角顶点为原点O,∴N1(0,0);
(II)若BD为直角边,B为直角顶点,则点N在x轴负半轴上,
∵OB=OD=ON2=3,∴N2(﹣3,0);
(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,
∵OB=OD=ON3=3,∴N3(0,﹣3).
∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).
(3)假设存在点P,使S△PBD=6,设点P坐标为(m,n).
(I)当点P位于直线BD上方时,如答图2所示:
过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.
S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,
化简得:m+n=7 ①,
∵P(m,n)在抛物线上,∴n=m2﹣4m+3,
代入①式整理得:m2﹣3m﹣4=0,
解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);
(II)当点P位于直线BD下方时,如答图3所示:
过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.
S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,
化简得:m+n=﹣1 ②,
∵P(m,n)在抛物线上,∴n=m2﹣4m+3,
代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.
故此时点P不存在.
综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).
24、(2013•鄂州压轴题)在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).
(1)若M(﹣2,5),请直接写出N点坐标.新-课 -标- 第-一- 网
(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.
解:(1)由于图形平移过程中,对应点的平移规律相同,
由点M到点M′可知,点的横坐标减5,纵坐标加3,
故点N′的坐标为(5﹣5,﹣1+3),即(0,2).
N(0,2);
(2)∵N(0,2)在抛物线y=x2+x+k上∴k=2
∴抛物线的解析式为y=x2+x+2
(3)∵y=x2+x+2=(x+2)2
∴B(﹣2,0)、A(0,2)、E(﹣,1)∵CO:OF=2:
∴CO=﹣m,FO=﹣m,BF=2+m
∵S△BEC=S△EBF+S△BFC=
∴(2+m)(﹣m+1)=
整理得:m2+m=0∴m=﹣1或0
∵m<0∴m=﹣1
(4)在Rt△ABO中,tan∠ABO===
∴∠ABO=30°,AB=2AO=4
①当∠BPE>∠APE时,连接A1B则对折后如图2,A1为对折后A的所落点,△EHP是重叠部分.
∵E为AB中点,∴S△AEP=S△BEP=S△ABP
∵S△EHP=S△ABP
∴=S△EHP=S△BHP=S△ABP∴A1H=HP,EH=HB=1
∴四边形A1BPE为平行四边形∴BP=A1E=AE=2即BP=2
②当∠BPE=∠APE时,重叠部分面积为△ABP面积的一半,不符合题意;
③当∠BPE<∠APE时.
则对折后如图3,A1为对折后A的所落点.△EHP是重叠部分
∵E为AB中点,∴S△AEP=S△BEP=S△ABP
∵S△EHP=S△ABP∴S△EBH=S△EHP==S△ABP∴BH=HP,EH=HA1=1
又∵BE=EA=2∴EHAP,∴AP=2
在△APB中,∠ABP=30°,AB=4,AP=2∴∠APB=90°,∴BP=,
综合①②③知:BP=2或;
25、(2013•黔西南州压轴题)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C
(1)求抛物线的函数解析式.
(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.
(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),
将点A(﹣2,0),B(﹣3,3),O(0,0),代入可得:,
解得:.
故函数解析式为:y=x2+2x.
(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(﹣2,0)知:DE=AO=2,
若D在对称轴直线x=﹣1左侧,
则D横坐标为﹣3,代入抛物线解析式得D1(﹣3,3),
若D在对称轴直线x=﹣1右侧,
则D横坐标为1,代入抛物线解析式得D2(1,3).
综上可得点D的坐标为:(﹣3,3)或(1,3).
(3)存在.如图:∵B(﹣3,3),C(﹣1,﹣1),
根据勾股定理得:BO2=18,CO2=2,BC2=20,
∵BO2+CO2=BC2,∴△BOC是直角三角形,
假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似,
设P(x,y),由题意知x>0,y>0,且y=x2+2x,
①若△AMP∽△BOC,则=,
即x+2=3(x2+2x),得:x1=,x2=﹣2(舍去).
当x=时,y=,即P(,),
②若△PMA∽△BOC,则=,
即:x2+2x=3(x+2),得:x1=3,x2=﹣2(舍去)
当x=3时,y=15,即P(3,15).
故符合条件的点P有两个,分别是P(,)或(3,15).