- 1.44 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018中考数学专题相似形
(共40题)
1.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;
2.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.
3.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
4.如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G.
(1)求证:BG=DE;
(2)若点G为CD的中点,求的值.
5.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;
(2)如图2,将 (1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.
6.如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.
(1)证明:∠BDC=∠PDC;
(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.
7.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.
8.如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.
(1)求证:DE=DC;
(2)求证:AF⊥BF;
(3)当AF•GF=28时,请直接写出CE的长.
9.在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图1,当∠ABC=45°时,求证:AD=DE;
(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.
10.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.
(1)求证:AF=AR;
(2)设点P运动的时间为t,
①求当t为何值时,四边形PRBC是矩形?
②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.
11.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知BD=,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.
12.将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;
(2)在图2中,若AP1=a,则CQ等于多少?
(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2
C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?
.
13.把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).
(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;
(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;
(3)当t为何值时,△APQ是等腰三角形.
14.△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.
(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)
(2)如图②,若AC=3,AB=5,BC=4.DE将△
ABC分成周长、面积相等的两部分,求AD;
(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?
15.已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.
(1)求证:△ABM∽△NDA;
(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.
16.如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.
(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;
(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.
17.△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.
(1)如图1,求证:DE•CD=DF•BE
(2)D为BC中点如图2,连接EF.
①求证:ED平分∠BEF;
②若四边形AEDF为菱形,求∠BAC的度数及的值.
18.如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段 BC上,联接AD交线段PQ于点E,且=,点G在BC延长线上,∠ACG的平分线交直线PQ于点F.
(1)求证:PC=PE;
(2)当P是边AC的中点时,求证:四边形AECF是矩形.
19.如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,BF、ED的延长线交于点G,连接GC.
(1)求证:AB=GD;
(2)如图2,当CG=EG时,求的值.
20.如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.
(1)求证:△BOD∽△BAE;
(2)求证:BD=CE;
(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?
21.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).
(1)当t=1时,KE= ,EN= ;
(2)当t为何值时,△APM的面积与△MNE的面积相等?
(3)当点K到达点N时,求出t的值;
(4)当t为何值时,△PKB是直角三角形?
22.如图(1),在△ABC中,AD是BC边的中线,过A点作AE∥BC与过D点作DE∥AB交于点E,连接CE.
(1)求证:四边形ADCE是平行四边形.
(2)连接BE,AC分别与BE、DE交于点F、G,如图(2),若AC=6,求FG的长.
23.已知:在正方形ABCD中,点E、F分别是CB、CD延长线上的点,且BE=DF,联结AE、AF、DE、DE交AB于点M.
(1)如图1,当E、A、F在一直线上时,求证:点M为ED中点;
(2)如图2,当AF∥ED,求证:AM2=AB•BM.
24.已知,如图1,点D、E分别在AB,AC上,且=.
(1)求证:DE∥BC.
(2)已知,如图2,在△ABC中,点D为边AC上任意一点,连结BD,取BD中点E,连结CE并延长CE交边AB于点F,求证:=.
(3)在(2)的条件下,若AB=AC,AF=CD,求的值.
25.已知△ABC,AC=BC,点E,F在直线AB上,∠ECF=∠A.
(1)如图1,点E,F在AB上时,求证:AC2=AF•BE;
(2)如图2,点E,F在AB及其延长线上,∠A=60°,AB=4,BE=3,求BF的长.
26.如图,正方形ABCD,∠EAF=45°.交BC、CD于E、F,交BD于H、G.
(1)求证:AD2=BG•DH;
(2)求证:CE=DG;
(3)求证:EF=HG.
27.如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.
(1)求证:AC•DF=BF•BD;
(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;
(3)当点C运动到什么位置时,CE∥BF?并说明理由.
28.如图,在△ABC中,点D在边AB上(不与A,B重合),DE∥BC交AC于点E,将△ADE沿直线DE翻折,得到△
A′DE,直线DA′,EA′分别交直线BC于点M,N.
(1)求证:DB=DM.
(2)若=2,DE=6,求线段MN的长.
(3)若=n(n≠1),DE=a,则线段MN的长为 (用含n的代数式表示).
29.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A、D、G在同一直线上,且AD=3,DE=1,连接AC、CG、AE,并延长AE交OG于点H.
(1)求证:∠DAE=∠DCG.
(2)求线段HE的长.
30.如图,△ABC中,点E、F分别在边AB,AC上,BF与CE相交于点P,且∠1=∠2=∠A.
(1)如图1,若AB=AC,求证:BE=CF;
(2)若图2,若AB≠AC,
①(1)中的结论是否成立?请给出你的判断并说明理由;
②求证:=.
31.如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC上,且满足∠AFE=∠A,DM∥EF交AC于点M.
(1)证明:DM=DA;
(2)点G在BE上,且∠BDG=∠C,如图2,求证:△DEG∽△ECF;
(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=5,求EH的长.
32.如图,正方形ABCD中,边长为12,DE⊥DC交AB于点E,DF平分∠EDC交BC于点F,连接EF.
(1)求证:EF=CF;
(2)当=时,求EF的长.
33.如图,已知在△ABC中,P为边AB上一点,连接CP,M为CP的中点,连接BM并延长,交AC于点D,N为AP的中点,连接MN.若∠ACP=∠ABD.
(1)求证:AC•MN=BN•AP;
(2)若AB=3,AC=2,求AP的长.
34.如图,已知AC、EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°,当四边形ABCD和EFCG均为正方形时,连接BF.
(1)求证:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的长.
35.如图①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交边AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止.
(1)特殊情形:如图②,发现当PM过点A时,PN也恰巧过点D,此时,△ABP △PCD(填“≌”或“~”);
(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.
36.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、25.则△ABC的面积是 .
37.如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q.
(1)求AO的长;
(2)求PQ的长;
(3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值.
38.尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.
求证:a2+b2=5c2
该同学仔细分析后,得到如下解题思路:
先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证
(1)请你根据以上解题思路帮尤秀同学写出证明过程.
(2)利用题中的结论,解答下列问题:
在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.
39.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.
(1)求证:△ADF∽△ACG;
(2)若,求的值.
40.如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF交AD于M,PE交BC于N,EF交MN于K.
求证:K是线段MN的中点.
参考答案与试题解析
(共40题)
1.(2017•阿坝州)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;
【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,
∴AB=AC,AD=AE,∠DAB=∠CAE.
∴△ADB≌△AEC.
∴BD=CE.
(2)解:①当点E在AB上时,BE=AB﹣AE=1.
∵∠EAC=90°,
∴CE==.
同(1)可证△ADB≌△AEC.
∴∠DBA=∠ECA.
∵∠PEB=∠AEC,
∴△PEB∽△AEC.
∴=.
∴=.
∴PB=.
②当点E在BA延长线上时,BE=3.
∵∠EAC=90°,
∴CE==.
同(1)可证△ADB≌△AEC.
∴∠DBA=∠ECA.
∵∠BEP=∠CEA,
∴△PEB∽△AEC.
∴=.
∴=.
∴PB=.
综上所述,PB的长为或.
2.(2017•常德)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.
【解答】证明:(1)在Rt△ABE和Rt△DBE中,,
∴△ABE≌△DBE;
(2)①过G作GH∥AD交BC于H,
∵AG=BG,
∴BH=DH,
∵BD=4DC,
设DC=1,BD=4,
∴BH=DH=2,
∵GH∥AD,
∴==,
∴GM=2MC;
②过C作CN⊥AC交AD的延长线于N,则CN∥AG,
∴△AGM∽△NCM,
∴=,
由①知GM=2MC,
∴2NC=AG,
∵∠BAC=∠AEB=90°,
∴∠ABF=∠CAN=90°﹣∠BAE,
∴△ACN∽△BAF,
∴=,
∵AB=2AG,
∴=,
∴2CN•AG=AF•AC,
∴AG2=AF•AC.
3.(2017•杭州)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
【解答】解:(1)∵AG⊥BC,AF⊥DE,
∴∠AFE=∠AGC=90°,
∵∠EAF=∠GAC,
∴∠AED=∠ACB,
∵∠EAD=∠BAC,
∴△ADE∽△ABC,
(2)由(1)可知:△ADE∽△ABC,
∴=
由(1)可知:∠AFE=∠AGC=90°,
∴∠EAF=∠GAC,
∴△EAF∽△CAG,
∴,
∴=
4.(2017•眉山)如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G.
(1)求证:BG=DE;
(2)若点G为CD的中点,求的值.
【解答】解:(1)∵BF⊥DE,
∴∠GFD=90°,
∵∠BCG=90°,∠BGC=∠DGF,
∴∠CBG=∠CDE,
在△BCG与△DCE中,
∴△BCG≌△DCE(ASA),
∴BG=DE,
(2)设CG=1,
∵G为CD的中点,
∴GD=CG=1,
由(1)可知:△BCG≌△DCE(ASA),
∴CG=CE=1,
∴由勾股定理可知:DE=BG=,
∵sin∠CDE==,
∴GF=,
∵AB∥CG,
∴△ABH∽△CGH,
∴=,
∴BH=,GH=,
∴=
5.(2017•河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;
(2)如图2,将 (1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.
【解答】(1)证明:∵四边形ABCD是正方形,
∴∠ABC=∠C,AB=BC.
∵AE⊥BF,
∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,
∴∠BAM=∠CBF.
在△ABE和△BCF中,
,
∴△ABE≌△BCF(ASA),
∴AE=BF;
(2)解:AE=BF,
理由:∵四边形ABCD是矩形,
∴∠ABC=∠C,
∵AE⊥BF,
∴∠AMB=∠BAM+∠ABM=90°,
∵∠ABM+∠CBF=90°,
∴∠BAM=∠CBF,
∴△ABE∽△BCF,
∴=,
∴AE=BF.
6.(2017•泰安)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.
(1)证明:∠BDC=∠PDC;
(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.
【解答】(1)证明:∵AB=AD,AC平分∠BAD,
∴AC⊥BD,
∴∠ACD+∠BDC=90°,
∵AC=AD,
∴∠ACD=∠ADC,
∴∠ADC+∠BDC=90°,
∵PD⊥AD,
∴∠ADC+∠PDC=90°,
∴∠BDC=∠PDC;
(2)解:过点C作CM⊥PD于点M,
∵∠BDC=∠PDC,
∴CE=CM,
∵∠CMP=∠ADP=90°,∠P=∠P,
∴△CPM∽△APD,
∴=,
设CM=CE=x,
∵CE:CP=2:3,
∴PC=x,
∵AB=AD=AC=1,
∴=,
解得:x=,
故AE=1﹣=.
7.(2017•天水)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.
【解答】(1)证明:∵△ABC是等腰直角三角形,
∴∠B=∠C=45°,AB=AC,
∵AP=AQ,
∴BP=CQ,
∵E是BC的中点,
∴BE=CE,
在△BPE和△CQE中,
∵,
∴△BPE≌△CQE(SAS);
(2)解:∵△ABC和△DEF是两个全等的等腰直角三角形,
∴∠B=∠C=∠DEF=45°,
∵∠BEQ=∠EQC+∠C,
即∠BEP+∠DEF=∠EQC+∠C,
∴∠BEP+45°=∠EQC+45°,
∴∠BEP=∠EQC,
∴△BPE∽△CEQ,
∴=,
∵BP=2,CQ=9,BE=CE,
∴BE2=18,
∴BE=CE=3,
∴BC=6.
8.(2017•绥化)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.
(1)求证:DE=DC;
(2)求证:AF⊥BF;
(3)当AF•GF=28时,请直接写出CE的长.
【解答】解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠DCE=∠CEB,
∵EC平分∠DEB,
∴∠DEC=∠CEB,
∴∠DCE=∠DEC,
∴DE=DC;
(2)如图,连接DF,
∵DE=DC,F为CE的中点,
∴DF⊥EC,
∴∠DFC=90°,
在矩形ABCD中,AB=DC,∠ABC=90°,
∴BF=CF=EF=EC,
∴∠ABF=∠CEB,
∵∠DCE=∠CEB,
∴∠ABF=∠DCF,
在△ABF和△DCF中,
,
∴△ABF≌△DCF(SAS),
∴∠AFB=∠DFC=90°,
∴AF⊥BF;
(3)CE=4.
理由如下:∵AF⊥BF,
∴∠BAF+∠ABF=90°,
∵EH∥BC,∠ABC=90°,
∴∠BEH=90°,
∴∠FEH+∠CEB=90°,
∵∠ABF=∠CEB,
∴∠BAF=∠FEH,
∵∠EFG=∠AFE,
∴△EFG∽△AFE,
∴=,即EF2=AF•GF,
∵AF•GF=28,
∴EF=2,
∴CE=2EF=4.
9.(2017•雨城区校级自主招生)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图1,当∠ABC=45°时,求证:AD=DE;
(2)如图2,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由.
【解答】(1)证明:如图1,过点D作DF⊥BC,交AB于点F,
则∠BDE+∠FDE=90°,
∵DE⊥AD,
∴∠FDE+∠ADF=90°,
∴∠BDE=∠ADF,
∵∠BAC=90°,∠ABC=45°,
∴∠C=45°,
∵MN∥AC,
∴∠EBD=180°﹣∠C=135°,
∵∠BFD=45°,DF⊥BC,
∴∠BFD=45°,BD=DF,
∴∠AFD=135°,
∴∠EBD=∠AFD,
在△BDE和△FDA中
,
∴△BDE≌△FDA(ASA),
∴AD=DE;
(2)解:DE=AD,
理由:如图2,过点D作DG⊥BC,交AB于点G,
则∠BDE+∠GDE=90°,
∵DE⊥AD,
∴∠GDE+∠ADG=90°,
∴∠BDE=∠ADG,
∵∠BAC=90°,∠ABC=30°,
∴∠C=60°,
∵MN∥AC,
∴∠EBD=180°﹣∠C=120°,
∵∠ABC=30°,DG⊥BC,
∴∠BGD=60°,
∴∠AGD=120°,
∴∠EBD=∠AGD,
∴△BDE∽△GDA,
∴=,
在Rt△BDG中,=tan30°=,
∴DE=AD.
10.(2017•深圳模拟)如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.
(1)求证:AF=AR;
(2)设点P运动的时间为t,
①求当t为何值时,四边形PRBC是矩形?
②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.
【解答】(1)证明:如图,在正方形ABCD中,AD=AB=2,
∵AE=AB,
∴AD=AE,
∴∠AED=∠ADE=45°,
又∵FG⊥DE,
∴在Rt△EGR中,∠GER=∠GRE=45°,
∴在Rt△ARF中,∠FRA=∠AFR=45°,
∴∠FRA=∠RFA=45°,
∴AF=AR;
(2)解:①如图,当四边形PRBC是矩形时,
则有PR∥BC,
∴AF∥PR,
∴△EAF∽△ERP,
∴,即:由(1)得AF=AR,
∴,
解得:或(不合题意,舍去),
∴,
∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,
∴(秒);
②若PR=PB,
过点P作PK⊥AB于K,
设FA=x,则RK=BR=(2﹣x),
∵△EFA∽△EPK,
∴,
即:=,
解得:x=±﹣3(舍去负值);
∴t=(秒);
若PB=RB,
则△EFA∽△EPB,
∴=,
∴,
∴BP=AB=×2=
∴CP=BC﹣BP=2﹣=,
∴(秒).
综上所述,当PR=PB时,t=;当PB=RB时,秒.
11.(2017•江汉区校级模拟)如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知BD=,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.
【解答】解:(1)∵四边形ABCD是正方形,
∴△ABD是等腰直角三角形,
∴2AB2=BD2,
∵BD=,
∴AB=1,
∴正方形ABCD的边长为1;
(2)CN=2EM
证明方法一、理由:∵四边形ABCD是正方形,
∴AC⊥BD,OA=OC
∵CF=CA,CE是∠ACF的平分线,
∴CE⊥AF,AE=FE
∴EO为△AFC的中位线
∴EO∥BC
∴
∴在Rt△AEN中,OA=OC
∴EO=OC=AC,
∴CM=EM
∵CE平分∠ACF,
∴∠OCM=∠BCN,
∵∠NBC=∠COM=90°,
∴△CBN∽△COM,
∴,
∴CN=CM,
即CN=2EM.
证明方法二、∵四边形ABCD是正方形,
∴∠BAC=45°=∠DBC,
由(1)知,在Rt△ACE中,EO=AC=CO,
∴∠OEC=∠OCE,
∵CE平分∠ACF,
∴∠OCE=∠ECB=∠OEC,
∴EO∥BC,
∴∠EOM=∠DBC=45°,
∵∠OEM=∠OCE
∴△EOM∽△CAN,
∴,
∴CN=2CM.
12.(2017•济宁二模)将两块全等的三角板如图1摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;
(2)在图2中,若AP1=a,则CQ等于多少?
(3)将图2中△A1B1C绕点C顺时针旋转到△A2B2C(如图3),点P2是A2C与AP1的交点.当旋转角为多少度时,有△AP1C∽△CP1P2?这时线段CP1与P1P2之间存在一个怎样的数量关系?.
【解答】(1)证明:∵∠B1CB=45°,∠B1CA1=90°,
∴∠B1CQ=∠BCP1=45°;
又B1C=BC,∠B1=∠B,
∴△B1CQ≌△BCP1(ASA)
∴CQ=CP1;
(2)解:如图:作P1D⊥AC于D,
∵∠A=30°,
∴P1D=AP1;
∵∠P1CD=45°,
∴=sin45°=,
∴CP1=P1D=AP1;
又AP1=a,CQ=CP1,
∴CQ=a;
(3)解:当∠P1CP2=∠P1AC=30°时,由于∠CP1P2=∠AP1C,则△AP1C∽△CP1P2,
所以将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C时,有△AP1C∽△CP1P2.
这时==,
∴P1P2=CP1.
13.(2017•惠阳区模拟)把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).
(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;
(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;
(3)当t为何值时,△APQ是等腰三角形.
【解答】(1)解:AP=2t
∵∠EDF=90°,∠DEF=45°,
∴∠CQE=45°=∠DEF,
∴CQ=CE=t,
∴AQ=8﹣t,
t的取值范围是:0≤t≤5;
(2)过点P作PG⊥x轴于G,可求得AB=10,SinB=,PB=10﹣2t,EB=6﹣t,
∴PG=PBSinB=(10﹣2t)
∴y=S△ABC﹣S△PBE﹣S△QCE==
∴当(在0≤t≤5内),y有最大值,y最大值=(cm2)
(3)若AP=AQ,则有2t=8﹣t解得:(s)
若AP=PQ,如图①:过点P作PH⊥AC,则AH=QH=,PH∥BC
∴△APH∽△ABC,
∴,
即,
解得:(s)
若AQ=PQ,如图②:过点Q作QI⊥AB,则AI=PI=AP=t
∵∠AIQ=∠ACB=90°∠A=∠A,
∴△AQI∽△ABC
∴即,
解得:(s)
综上所述,当或或时,△APQ是等腰三角形.
14.(2017•庐阳区一模)△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.
(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)
(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;
(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?
【解答】解:(1)∵DE将△ABC分成周长相等的两部分,
∴AD+AE=CD+BC+BE=(AB+AC+BC)=(a+b+c);
(2)设AD=x,AE=6﹣x,
∵S△ADE=AD•AE•sinA=3,
即:x(6﹣x)•=3,
解得:x1=(舍去),x2=,
∴AD=;
(3)∵DE∥BC,
∴△ADE∽△ABC,
∴,
∵=,
∴AD=b,AE=c,
∴bc=(a+b+c),
∴=﹣1.
15.(2017•嘉兴模拟)已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN.
(1)求证:△ABM∽△NDA;
(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形,并加以证明.
【解答】(1)证明:∵四边形ABCD是正方形,
∴∠ABC=∠ADC=∠BAD=90°,
∵BM、DN分别是正方形的两个外角平分线,
∴∠ABM=∠ADN=135°,
∵∠MAN=45°,
∴∠BAM=∠AND=45°﹣∠DAN,
∴△ABM∽△NDA;
(2)解:当∠BAM=22.5°时,四边形BMND为矩形;理由如下:
∵∠BAM=22.5°,∠EBM=45°,
∴∠AMB=22.5°,
∴∠BAM=∠AMB,
∴AB=BM,
同理AD=DN,
∵AB=AD,∴BM=DN,
∵四边形ABCD是正方形
∴∠ABD=∠ADB=45°,
∴∠BDN=∠DBM=90°
∴∠BDN+∠DBM=180°,
∴BM∥DN
∴四边形BMND为平行四边形,
∵∠BDN=90°,
∴四边形BMND为矩形.
16.(2017•肥城市三模)如图,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.
(1)点G在BE上,且∠BDG=∠C,求证:DG•CF=DM•EG;
(2)在图中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.
【解答】(1)证明:如图1所示,
∴D,E分别为AB,BC中点,
∴DE∥AC
∵DM∥EF,
∴四边形DEFM是平行四边形,
∴DM=EF,
如图2所示,
∵D、E分别是AB、BC的中点,
∴DE∥AC,
∴∠BDE=∠A,∠DEG=∠C,
∵∠AFE=∠A,
∴∠BDE=∠AFE,
∴∠BDG+∠GDE=∠C+∠FEC,
∵∠BDG=∠C,
∴∠GDE=∠FEC,
∴△DEG∽△ECF;
∴,
∴,
∴,
∴DG•CF=DM•EG;
(2)解:如图3所示,
∵∠BDG=∠C=∠DEB,∠B=∠B,
∴△BDG∽△BED,
∴,
∴BD2=BG•BE,
∵∠AFE=∠A,∠CFH=∠B,
∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,
又∵∠FEH=∠CEF,
∴△EFH∽△ECF,
∴=,
∴EF2=EH•EC,
∵DE∥AC,DM∥EF,
∴四边形DEFM是平行四边形,
∴EF=DM=DA=BD,
∴BG•BE=EH•EC,
∵BE=EC,
∴EH=BG=1.
17.(2017•肥城市模拟)△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.
(1)如图1,求证:DE•CD=DF•BE
(2)D为BC中点如图2,连接EF.
①求证:ED平分∠BEF;
②若四边形AEDF为菱形,求∠BAC的度数及的值.
【解答】(1)证明:∵△ABC中,AB=AC,
∴∠B=∠C.
∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,
∴∠FDC=∠DEB,
∴△BDE∽△CFD,
∴,
即DE•CD=DF•BE;
(2)解:①由(1)证得△BDE∽△CFD,
∴,
∵D为BC中点,
∴BD=CD,
∴=,
∵∠B=∠EDF,
∴△BDE~△DFE,
∴∠BED=∠DEF,
∴ED平分∠BEF;
②∵四边形AEDF为菱形,
∴∠AEF=∠DEF,
∵∠BED=∠DEF,
∴∠AEF=60°,
∵AE=AF,
∴∠BAC=60°,
∵∠BAC=60°,
∴△ABC是等边三角形,
∴∠B=60°,
∴△BED是等边三角形,
∴BE=DE,
∵AE=DE,
∴AE=AB,
∴=.
18.(2017•长宁区二模)如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段 BC上,联接AD交线段PQ于点E,且=,点G在BC延长线上,∠ACG的平分线交直线PQ于点F.
(1)求证:PC=PE;
(2)当P是边AC的中点时,求证:四边形AECF是矩形.
【解答】(1)证明:∵PQ∥BC,
∴△AQE∽△ABD,△AEP∽△ADC,
∴=,,
∴=,
∵=,
∴=,
∴PC=PE;
(2)∵PF∥DG,
∴∠PFC=∠FCG,
∵CF平分∠PCG,
∴∠PCF=∠FCG,
∴∠PFC=∠FCG,
∴PF=PC,
∴PF=PE,
∵P是边AC的中点,
∴AP=CP,
∴四边形AECF是平行四边形,
∵PQ∥CD,
∴∠PEC=∠DCE,
∴∠PCE=∠DCE,
∴∠PCE+∠PCF=(∠PCD+∠PCG)=90°,
∴∠ECF=90°,
∴平行四边形AECF是矩形.
19.(2017•安徽模拟)如图,已知△ABC中,AC=BC,点D、E、F分别是线段AC、BC、AD的中点,BF、ED的延长线交于点G,连接GC.
(1)求证:AB=GD;
(2)如图2,当CG=EG时,求的值.
【解答】解:(1)∵D、E分别是线段AC、BC的中点,
∴DE为△ABC的中位线,
∴DE∥AB,即EG∥AB,
∴∠FDG=∠A,
∵点F为线段AD的中点,
∴AF=DF,
在△ABF与△DGF中,
∴△ABF≌△DGF(ASA)
∴AB=GD
(2)∵DE为△ABC的中位线,
∴DE=AB,CE=BC=AC
∵DG=AB,
∴EG=DE+DG
∴EG=AB
∵DE∥AB,
∴∠GEC=∠CBA,
∵AC=BC,CG=EG
∴△GEC∽△CBA
∴,
即,
∴
20.(2017•蜀山区二模)如图,在△ABC中,D、E分别为AB、AC上的点,线段BE、CD相交于点O,且∠DCB=∠EBC=∠A.
(1)求证:△BOD∽△BAE;
(2)求证:BD=CE;
(3)若M、N分别是BE、CE的中点,过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?
【解答】(1)证明:∵∠BCO=∠CBO,
∴∠DOB=∠BCO+CBO=2∠BCO,
∵∠A=2∠BCO,
∴∠DOB=∠A,
∵∠ABE=∠ABE,
∴△BOD∽△BAE;
(2)解:延长CD,在CD延长线上取一点F,使BF=BD,
∴∠BDF=∠BFD,
∵∠BDF=∠ABO+∠DOB,∠BEC=∠ABO+∠A,
由(1)得∠BOD=∠A,
∴∠BDF=∠BEC,
∴∠BFD=∠BEC,
在△BFC与△CEB中,,
∴△BFC≌△CEB,
∴BD=BF,
∴BD=CE;
(3)解:AP=AQ,
理由:取BC的中点G,连接GM,GN,
∵M,N分别是BE,CD的中点,
∴GM,GN是中位线,
∴GM∥CE,GM=CE,GN∥BD,GN=BD,
∵BD=CE,
∴GM=GN,
∴∠3=∠4,
∵GM∥CE,
∴∠2=∠4,
∵GN∥BD,
∴∠3=∠1,
∴∠1=∠2,
∴AP=AQ.
21.(2017•石家庄二模)如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).
(1)当t=1时,KE= 1 ,EN= ;
(2)当t为何值时,△APM的面积与△MNE的面积相等?
(3)当点K到达点N时,求出t的值;
(4)当t为何值时,△PKB是直角三角形?
【解答】解:(1)当t=1时,根据题意得,AP=1,PK=1,
∵PE=2,
∴KE=2﹣1=1,
∵四边形ABCD和PEFG都是矩形,
∴△APM∽△ABC,△APM∽△NEM,
∴=,=,
∴MP=,ME=,
∴NE=;
故答案为:1;;
(2)由(1)并结合题意可得,
AP=t,PM=t,ME=2﹣t,NE=﹣t,
∴t×t=(2﹣t)×(﹣t),
解得,t=;
(3)当点K到达点N时,则PE+NE=AP,
由(2)得,﹣t+2=t,
解得,t=;
(4)①当K在PE边上任意一点时△PKB是直角三角形,
即,0<t≤2;
②当点k在EF上时,
则KE=t﹣2,BP=8﹣t,
∵△BPK∽△PKE,
∴PK2=BP×KE,PK2=PE2+KE2,
∴4+(t﹣2)2=(8﹣t)(t﹣2),
解得t=3,t=4;
③当t=5时,点K在BC边上,∠KBP=90°.
综上,当0<t≤2或t=3或t=4或5时,△PKB是直角三角形.
22.(2017•农安县模拟)如图(1),在△ABC中,AD是BC边的中线,过A点作AE∥BC与过D点作DE∥AB交于点E,连接CE.
(1)求证:四边形ADCE是平行四边形.
(2)连接BE,AC分别与BE、DE交于点F、G,如图(2),若AC=6,求FG的长.
【解答】(1)证明:∵AE∥BC,DE∥AB.
∴四边形ABDE是平行四边形,
∴AE=BD,
又∵BD=DC,
∴AE=DC,
又∵AE∥DC,
∴四边形ADCE是平行四边形.
(2)解:∵四边形ADCE是平行四边形,AC=6,
∴AG=GC=3,
又∵AE∥BC,
∴△AEF∽△CBF,
∴==,
∴AF=2,
∴FG=AG﹣AF=1.
23.(2017•杨浦区三模)已知:在正方形ABCD中,点E、F分别是CB、CD延长线上的点,且BE=DF,联结AE、AF、DE、DE交AB于点M.
(1)如图1,当E、A、F在一直线上时,求证:点M为ED中点;
(2)如图2,当AF∥ED,求证:AM2=AB•BM.
【解答】(1)连接AC,∵四边形ABCD是正方形,
∴∠DAM=∠BEM=∠BCD=90°,∠BCA=∠DCA=45°,AB=BC=CD=DA,
∵BE=DF,∴CE=CF,
∴∠AEB=∠F=45°,
∴BE=BA=AD,
在△ADM和△BEM中,,
∴△ADM和△BEM,
∴DM=EM,即点M为ED中点;
(2)解:∵四边形ABCD是正方形,
∴∠DAM=∠EBM=90°,AD=AB,
∴△ADM∽△BEM,
∴=,
∵AM∥DF,AF∥DE,
∴四边形AMDF是平行四边形,
∴AM=DF,
∵BE=DF,
∴AM=BE,
∴,
∴AM2=AB•BM.
24.(2017•杭州模拟)已知,如图1,点D、E分别在AB,AC上,且=.
(1)求证:DE∥BC.
(2)已知,如图2,在△
ABC中,点D为边AC上任意一点,连结BD,取BD中点E,连结CE并延长CE交边AB于点F,求证:=.
(3)在(2)的条件下,若AB=AC,AF=CD,求的值.
【解答】解:(1)∵∠A=∠A,
,
∴△ADE∽△ABC
∴∠ADE=∠B,
∴DE∥BC
(2)过点D作DG∥AB交CF于点G,
∴△CDG∽△CAF
∴,
∵E是BD的中点,
∴BE=ED,
∵DG∥AB,
∴∠FBE=∠EDG
在△DEG与△CAF中,
∴△DEG≌△BEF(AAS)
∴DG=BF,
∴=
(3)由(2)可得:
∵AB=AC,AF=CD,
∴=
∴BF2+BF•AF﹣AF2=0,
∴()2+﹣1=0,
∴解得:=,
∴=
25.(2017•岱岳区二模)已知△ABC,AC=BC,点E,F在直线AB上,∠ECF=∠A.
(1)如图1,点E,F在AB上时,求证:AC2=AF•BE;
(2)如图2,点E,F在AB及其延长线上,∠A=60°,AB=4,BE=3,求BF的长.
【解答】解:(1)∵AC=BC,
∴∠A=∠B
∵∠BEC=∠ACE+∠A
∠ACF=∠ACE+∠ECF,
∴∠ACF=∠BEC
∴△ACF∽△BEC
∴
∴AC2=AF•BE
(2)∵∠A=60°,
∴△ABC是等边三角形
∴∠A=∠ABC=∠ACB=60°=∠ECF,
∵∠ECB=∠ACB﹣∠ACE,∠F=∠ABC﹣∠FCB,
∠ACE=∠FCB,
∴∠ECB=∠F,
∵∠ABC=∠A,
∴△ACF∽△BEC
∴=
∴AF=
∴BF=AF﹣AB=
26.(2017•硚口区模拟)如图,正方形ABCD,∠EAF=45°.交BC、CD于E、F,交BD于H、G.
(1)求证:AD2=BG•DH;
(2)求证:CE=DG;
(3)求证:EF=HG.
【解答】证明:(1)∵四边形ABCD为正方形
∴∠ABD=∠ADB=45°,AB=AD,
∵∠EAF=45°
∴∠BAG=45°+∠BAH,∠AHD=45°+∠BAH,
∴∠BAG=∠AHD,
又∵∠ABD=∠ADB=45°,
∴△ABG∽△HDA,
∴,
∴BG•DH=AB•AD=AD2;
(2)如图,连接AC,
∵四边形ABCD是正方形
∴∠ACE=∠ADB=∠CAD=45°,
∴AC=AD,
∵∠EAF=45°,
∴∠EAF=∠CAD,
∴∠EAF﹣∠CAF=∠CAD﹣∠CAF,
∴∠EAC=∠GAD,
∴△EAC∽△GAD,
∴,
∴CE=DG;
(3)由(2)得:△EAC∽△GAD,
∴,
同理得:△AFC∽△AHB,
∴,
∴,
∴,
∵∠GAH=∠EAF,
∴△GAH∽△EAF,
∴,
∴EF=GH.
27.(2017•岱岳区一模)如图,C为线段BD上一动点,过B、D分别作BD的垂线,使AB=BC,DE=DB,连接AD、AC、BE,过B作AD的垂线,垂足为F,连接CE、EF.
(1)求证:AC•DF=BF•BD;
(2)点C运动的过程中,∠CFE的度数保持不变,求出这个度数;
(3)当点C运动到什么位置时,CE∥BF?并说明理由.
【解答】解:(1)∵BF⊥AD,
∴∠AFB=∠BFD=90°,
∴∠ABF+∠BAF=90°,
∵AB⊥BC,
∴∠ABF+∠DBF=90°,
∴∠BAF=∠DBF,
∴△ABF∽△BDF,
∴=,即AB•DF=BF•BD,
由AB=BC,AB⊥BC,
∴AB=AC,
∴AC•DF=BF•BD;
(2)∵=,AB=BC、BD=DE,
∴=,
∵∠FBC+∠BDF=90°、∠BDF+∠EDF=90°,
∴∠FBC=∠EDF,
∴△FBC∽△FDE,
∴∠BFC=∠DFE,
又∠BFD=∠BFC+∠CFD=90°,
∴∠DFE+∠CFD=90°,即∠CFE=90°,
故∠CFE的度数保持不变,始终等于90°.
(3)当C为BD中点时,CE∥BF,
理由如下:
∵C为BD中点,
∴AB=BC=CD=BD=DE,
在△ABD和△CDE中,
∵,
∴△ABD≌△CDE(SAS),
∴∠ADB=∠CED,
∵∠CED+∠ECD=90°,
∴∠ADB+∠ECD=90°,
∴CE⊥AD,
∵BF⊥AD,
∴CE∥BF.
28.(2017•长春模拟)如图,在△ABC中,点D在边AB上(不与A,B重合),DE∥BC交AC于点E,将△ADE沿直线DE翻折,得到△A′DE,直线DA′,EA′分别交直线BC于点M,N.
(1)求证:DB=DM.
(2)若=2,DE=6,求线段MN的长.
(3)若=n(n≠1),DE=a,则线段MN的长为 a﹣(n>1)或﹣a(0<n<1) (用含n的代数式表示).
【解答】解:(1)∵DE∥BC,
∴∠ADE=∠B,∠A′DE=∠DMB,
由翻折可知:∠ADE=∠A′DE
∵∠B=∠DMB,
∴DB=DM,
(2)由翻折可知:A′D=AD
∵,DB=DM,
∴,
∴=
∵DE∥BC,
∴△A′MN∽△A′DE
∴=
∵DE=6,
∴MN=DE=3,
(3)由翻折可知:A′D=AD
∵=n,DB=DM,
∴=n,
当n>1时,
∴=
∵DE∥BC,
∴△A′MN∽△A′DE
∴=
∵DE=a,
∴MN=DE=a﹣,
同理:当0<n<1时,
此时∴=,
∴MN=,
综上所述,MN=a﹣(n>1)或﹣a(0<n<1)
故答案为:(3)MN=a﹣(n>1)或﹣a(0<n<1)
29.(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;
(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;
(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)
【解答】解:(1)如图1中,
∵∠ADC=90°,∠EDC+∠ADC=180°,
∴∠EDC=90°,
∵∠ABC=90°,
∴∠EDC=∠ABC,
∵∠E=∠E,
∴△EDC∽△EBA,
∴=,
∴ED•EA=EC•EB.
(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.
在Rt△CDF中,cos∠ADC=,
∴=,∵CD=5,
∴DF=3,
∴CF==4,
∵S△CDE=6,
∴•ED•CF=6,
∴ED==3,EF=ED+DF=6,
∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,
∴∠BAG=30°,
∴在Rt△ABG中,BG=AB=6,AG==6,
∵CF⊥AD,AG⊥EB,
∴∠EFC=∠G=90°,∵∠E=∠E,
∴△EFC∽△EGA,
∴=,
∴=,
∴EG=9,
∴BE=EG﹣BG=9﹣6,
∴S四边形ABCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.
(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,
∴tan∠E=,
作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,
∴FG=DF﹣DG=5+n﹣3a,
∵CH⊥AD,AG⊥DF,∠E=∠F,
易证△AFG∽△CEH,
∴=,
∴=,
∴a=,
∴AD=5a=.
30.(2017•大冶市模拟)如图,△ABC中,点E、F分别在边AB,AC上,BF与CE相交于点P,且∠1=∠2=∠A.
(1)如图1,若AB=AC,求证:BE=CF;
(2)若图2,若AB≠AC,
①(1)中的结论是否成立?请给出你的判断并说明理由;
②求证:=.
【解答】解:(1)∵AB=AC,
∴∠EBC=∠FCB,
在△BCE与△CBF中,,
∴△BCE≌△CBF,
∴BE=CF;
(2)①成立,理由如下:作∠A的平分线交BC于点D,连结DE、DF,
则∠DAF=∠DAE=∠A,
∵∠1=∠2=∠A,
∴∠DAF=∠DAE=∠1=∠2,
∴A、B、D、F四点与A、E、D、C四点分别共圆,
∴BD=DF,DE=DC,
∵∠BDE=∠A,∠CDF=∠A,
∴∠BDE=∠CDF,
在△DEB与△DCF中,,
∴△DEB≌△DCF,
∴BE=CF;
②由上面的证明易知△DFB与△DEC均为等腰三角形,
∵∠1=∠2,
∴△DFB∽△DEC,
∴,
∵AD是△ABC的内角平分线,
∴,
∴.
31.(2017•大东区二模)如图1,在锐角△ABC中,D、E分别是AB、BC的中点,点F在AC上,且满足∠AFE=∠A,DM∥EF交AC于点M.
(1)证明:DM=DA;
(2)点G在BE上,且∠BDG=∠C,如图2,求证:△DEG∽△ECF;
(3)在图2中,取CE上一点H,使得∠CFH=∠B,若BG=5,求EH的长.
【解答】(1)证明:如图1所示,
∵DM∥EF,
∴∠AMD=∠AFE,
∵∠AFE=∠A,
∴∠AMD=∠A,
∴DM=DA;
(2)证明:如图2所示,
∵D、E分别是AB、BC的中点,
∴DE∥AC,
∴∠BDE=∠A,∠DEG=∠C,
∵∠AFE=∠A,
∴∠BDE=∠AFE,
∴∠BDG+∠GDE=∠C+∠FEC,
∵∠BDG=∠C,
∴∠GDE=∠FEC,
∴△DEG∽△ECF;
(3)解:如图3所示,
∵∠BDG=∠C=∠DEB,∠B=∠B,
∴△BDG∽△BED,
∴=,
∴BD2=BG•BE,
∵∠AFE=∠A,∠CFH=∠B,
∴∠C=180°﹣∠A﹣∠B=180°﹣∠AFE﹣∠CFH=∠EFH,
又∵∠FEH=∠CEF,
∴△EFH∽△ECF,
∴=,
∴EF2=EH•EC,
∵DE∥AC,DM∥EF,
∴四边形DEFM是平行四边形,
∴EF=DM=DA=BD,
∴BG•BE=EH•EC,
∵BE=EC,
∴EH=BG=5.
32.(2017•随州)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.
(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.
下面是两位学生有代表性的证明思路:
思路1:不需作辅助线,直接证三角形全等;
思路2:不证三角形全等,连接BD交AF于点H.…
请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);
(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求的值;
(3)在(2)的条件下,若=k(k为大于
的常数),直接用含k的代数式表示的值.
【解答】解:(1)如图1,
证法一:∵四边形ABCD为菱形,
∴AB=CD,AB∥CD,
∵四边形ABEF为平行四边形,
∴AB=EF,AB∥EF,
∴CD=EF,CD∥EF,
∴∠CDM=∠FEM,
在△CDM和△FEM中
,
∴△CDM≌△FEM,
∴DM=EM,
即点M是DE的中点;
证法二:∵四边形ABCD为菱形,
∴DH=BH,
∵四边形ABEF为平行四边形,
∴AF∥BE,
∵HM∥BE,
∴==1,
∴DM=EM,
即点M是DE的中点;
(2)∵△CDM≌△FEM,
∴CM=FM,
设AD=a,CM=b,
∵∠ABE=135°,
∴∠BAF=45°,
∵四边形ABCD为菱形,
∴∠NAF=45°,
∴四边形ABCD为正方形,
∴AC=AD=a,
∵AB∥EF,
∴∠AFN=∠BAF=45°,
∴△ANF为等腰直角三角形,
∴NF=AF=(a+b+b)=a+b,
∴NE=NF+EF=a+b+a=2a+b,
∴===;
(4)∵==+2•=k,
∴=(k﹣),
∴=,
∴==•+1=•+1=.
33.(2016秋•故城县期末)如图,已知在△ABC中,P为边AB上一点,连接CP,M为CP的中点,连接BM并延长,交AC于点D,N为AP的中点,连接MN.若∠ACP=∠ABD.
(1)求证:AC•MN=BN•AP;
(2)若AB=3,AC=2,求AP的长.
【解答】解:(1)∵M为CP的中点,N为AP的中点,
∴MN是△ACP的中位线,
∴NM∥AC,MN=AC,
∴∠A=∠BNM,
又∵∠ACP=∠ABD,
∴△ACP∽△NBM,
∴=,
∴AC•MN=BN•AP;
(2)∵AC=2,
∴MN=AC=1,
设AN=x,则AP=2x,
∵AC•MN=BN•AP,
∴2×1=(3﹣x)×2x,
解得x1=,x2=,
∴AP=3+(舍去),AP=3﹣,
∴AP的长3﹣.
34.(2016秋•召陵区期末)如图,已知AC、EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠
CBE=90°,当四边形ABCD和EFCG均为正方形时,连接BF.
(1)求证:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的长.
【解答】解:(1)∵四边形ABCD和EFCG均为正方形,
∴==,
又∵∠ACE+∠BCE=∠BCF+∠BCE=45°,
∴∠ACE=∠BCF,
∴△CAE∽△CBF.
(2):∵△CAE∽△CBF,
∴∠CAE=∠CBF,=,
又∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
∴∠EBF=90°,
又∵==,AE=2
∴=,
∴BF=,
∴EF2=BE2+BF2=3,
∴EF=,
∵CE2=2EF2=6,
∴CE=.
35.(2016秋•平舆县期末)如图①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交边AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止.
(1)特殊情形:如图②,发现当PM过点A时,PN也恰巧过点D,此时,△ABP ∽ △PCD(填“≌”或“~”);
(2)类比探究:如图③,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.
【解答】解:(1)如图②所示,∵∠MPN=90°,∠B=90°,
∴∠BAP+∠APB=90°=∠CPD+∠APB,
∴∠BAP=∠CPD,
又∵∠B=∠C,
∴△ABP∽△PCD;
故答案为:∽;
(2)在旋转过程中,的值为定值.
证明:如图③所示,过点F作FG⊥BC于G,则∠B=∠FGP,
∵∠MPN=90°,∠B=90°,
∴∠BEP+∠EPB=90°=∠CPF+∠EPB,
∴∠BEP=∠CPF,
∴△EBP∽△GPF,
∴=,
∵矩形ABGF中,FG=AB=2,而PB=1,
∴=,
∴=,
即的值为定值.
36.(2016秋•瑶海区期末)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、25.则△ABC的面积是 64 .
【解答】解:如图,,
过M作BC的平行线交AB、AC于D、E,过M作AC平行线交AB、BC于F、H,过M作AB平行线交AC、BC于I、G,
根据题意得,△1∽△2∽△3,
∵△1:△2=1:4,△1:△3=1:25,
∴它们的边长比为1:2:5,
又∵四边形BDMG与四边形CEMH为平行四边形,
∴DM=BG,EM=CH,
设DM为x,
则BC=BG+GH+CH=x+5x+2x=8x,
∴BC:DM=8:1,
∴S△ABC:S△FDM=64:1,
∴S△ABC=1×64=64.
故答案为:64.
37.(2016•南通)如图,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于点O,D是线段OB上一点,DE=2,ED∥AC(∠ADE<90°),连接BE、CD.设BE、CD的中点分别为P、Q.
(1)求AO的长;
(2)求PQ的长;
(3)设PQ与AB的交点为M,请直接写出|PM﹣MQ|的值.
【解答】解:(1)如图1中,
∵CO⊥AB,
∴∠AOC=∠ACB=90°,∵∠A=∠A,
∴△ABC∽△ACO,
∴=,
∵AB===13,
∴OA==.
(2)如图2中,取BD中点F,CD中点Q,连接PF、QF,
则PF∥ED,FQ∥BC,PF⊥FQ,且PF=ED=1,FQ=BC=6,
在Rt△PFQ中,PQ===.
(3)如图3中,取AD中点G,连接GQ,
∵GQ∥AC,ED∥AC,PF∥ED,
∴PF∥GQ,
∴△PMF∽△QMG,
∴==,
∵PM+QM=,
∴PM=,MQ=,
∴|PM﹣QM|=.
38.(2016•邵阳)尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.
求证:a2+b2=5c2
该同学仔细分析后,得到如下解题思路:
先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证
(1)请你根据以上解题思路帮尤秀同学写出证明过程.
(2)利用题中的结论,解答下列问题:
在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.
【解答】解:(1)设PF=m,PE=n,连结EF,如图1,
∵AF,BE是△ABC的中线,
∴EF为△ABC的中位线,AE=b,BF=a,
∴EF∥AB,EF=c,
∴△EFP∽△BPA,
∴,即==,
∴PB=2n,PA=2m,
在Rt△AEP中,∵PE2+PA2=AE2,
∴n2+4m2=b2①,
在Rt△AEP中,∵PF2+PB2=BF2,
∴m2+4n2=a2②,
①+②得5(n2+m2)=(a2+b2),
在Rt△EFP中,∵PE2+PF2=EF2,
∴n2+m2=EF2=c2,
∴5•c2=(a2+b2),
∴a2+b2=5c2;
(2)∵四边形ABCD为菱形,
∴BD⊥AC,
∵E,F分别为线段AO,DO的中点,
由(1)的结论得MB2+MC2=5BC2=5×32=45,
∵AG∥BC,
∴△AEG∽△CEB,
∴==,
∴AG=1,
同理可得DH=1,
∴GH=1,
∴GH∥BC,
∴===,
∴MB=3GM,MC=3MH,
∴9MG2+9MH2=45,
∴MG2+MH2=5.
39.(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.
(1)求证:△ADF∽△ACG;
(2)若,求的值.
【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,
∴∠ADF=∠C,
∵=,
∴△ADF∽△ACG.
(2)解:∵△ADF∽△ACG,
∴=,
又∵=,
∴=,
∴=1.
40.(2016•黄冈校级自主招生)如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF交AD于M,PE交BC于N,EF交MN于K.
求证:K是线段MN的中点.
【解答】证明:取AC的中点Q,连接QF、AE,过C点作CR∥QF交MP于点R,连接NR.
∵Q、F、E分别是AC、CD、AB的中点,
∴QF∥AD,QE∥NC,
∴,,
∵AQ=CQ,
∴.
∵QF∥AD,CR∥QF,
∴CR∥AD,
∴==1,
∴FM=FR,
∴=,
∴EF∥RN.
∵FK∥RN,FM=FR,
∴KM=KN,即K是线段MN的中点.