- 241.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011年北京市解密预测中考模拟
数学试题卷1
温馨提示:
1. 本试卷分试题卷和答题卷两部分。满分120分, 考试时间120分钟.
2.答题时, 应该在答题卷密封区内写明校名, 姓名和学号。
3.考试时不能使用计算器,所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应.
4.考试结束后, 上交答题卷.
试题卷
一、仔细选一选(本大题有10小题,每小题3分,共30分。请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)
1.下列四个数中,比0小的数是 ( ▲ )
A. B.- C. D.1
2.2009年初甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m,用科学记数法表示这个数是 ( ▲ )
A.0.156× m B.0.156× m C.1.56× m D.1.56× m
3.下列运算正确的是( ▲ )
①
A. B. C. D.
②
4.解方程组 ,①-②得( ▲ )
A. B. C. D.
5.把不等式组的解集表示在数轴上,如下图,正确的是( ▲ )
-1
0
1
-1
0
1
-1
0
1
-1
0
1
A
B
C
D
6.已知二次函数,则函数值y的最小值是(▲)
A. 3 B. 2 C. 1 D. -1
7.
小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟。以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用( ▲ )
A. 14分钟 B. 13分钟 C . 12分钟 D . 11分钟
8.由左图所示的地板砖各两块所铺成的下列图案中,既是轴对称图形,又是中心对称图形的是(▲)
第9题图
2cm
A. B. C. D.
9.如图是一个高为cm,底面半径为2cm的圆锥形无底纸帽,现利用这个纸帽的侧面纸张裁剪出一个圆形纸片(不考虑纸帽接缝),这个圆形纸片的半径最长可以是( ▲ )
_
O
_
D
_
C
_
B
_
A
(计算结果保留3个有效数字。参考数据4 , 2).
A 3.12cm B 3.28 cm C 3.3 1cm D 3.00cm
10.如图,已知的半径为5,锐角△ABC内接于,BD⊥AC
于点D,AB=8, 则的值等于 ( ▲ )
A. B. C. D.
第10题图
二、填空题 (本大题有6小题,每小题4分,共24分)
11.分解因式:x2-9 = 。
12.已知x=2是一元二次方程(的一个根,
主视图
俯视图
左视图
4
3
8
则的值是 。
13.如图,点P在反比例函数 (x>0)的图象上,且横坐标为2。
若将点P先向右平移两个单位,再向上平移一个单位后所得的像为
点.则经过点的反比例函数图象的解析式是 。
14.一个几何体的三视图如图所示 ,其中主视图和俯视图都是矩形,
则它的表面积是 。
第14题图
15.在△ABC中,AB=AC=12cm,BC=6cm,D为BC的中点,
动点P从B点出发,以每秒1cm的速度沿B→A→C的方向运动.设运动时间为t秒,过D、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍,那么t的值为 .
… ;
图(1)
…
图(2)
a
b
c
d
16.图(1)是面积都为S的正边形(),图(2)是由图(1)中的每个正多边形分别对应“扩展”而来。如:图(2)中的a是由图(1)中的正三角形的每边长三等分,以居中的一条线段向外作正三角形,并把居中线段去掉而得到;图(2)中的b是由图(1)中的正四边形的每边长三等分,以居中的一条线段向外作正四边形,并把居中线段去掉而得到 … ,以此类推,当图(1)中的正多边形是正十边形时,图(2)中所有“扩展”后的图形面积和为248。则S的值是 。
三、解答题(本大题有8小题,共66分)
17.(本题满分6分)先化简,然后从,1,-1中选取一个你认为合适的数作为x的值代入求值.
18.(本题满分6分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3∶4∶5∶6∶2,已知此次调查中捐10元和15元的人数共27人.
(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?
(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?
(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额。
第18题(图1) (图2)
19.(本题满分6分)如图, 在中, 是边上的一点, 是的中点, 过点作的平行线交的延长线于点, 且, 连接.
第19题图
(1) 求证: 是的中点;
(2) 如果, 试判断四边形的形状, 并证明你的结论.
20.(本题满分8分)有三张卡片(背面完全相同)分别写有,-2,3,把它们背面朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张.
(1)小军抽取的卡片是的概率是 ;两人抽取的卡片都是3的概率是 .
D
x
C
E
A
O
y
(2)李刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜.你认为这个游戏规则对谁有利?请用列表法或树状图进行分析说明.
21.(本题满分8分)如图,Rt △OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y轴上,OC=,∠CAO=30º.将Rt △OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.
(1)求折痕CE所在直线的解析式;
(2)求点D的坐标;
第21题图
22.(本题满分10分)如图所示,AB是直径,OD⊥弦BC于点F,
且交于点E,且∠AEC=∠ODB.
(1)判断直线BD和的位置关系,并给出证明;
(2)当AB=10,BC=8时,求的面积.
第22题图
23.(本题满分10分)某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?
24. (本题满分12分)如图,在菱形ABCD中,AB=2cm,∠BAD=60°,E为CD边中点,点P从点A开始沿AC方向以每秒cm的速度运动,同时,点Q从点D出发沿DB方向以每秒1cm的速度运动,当点P到达点C时,P,Q同时停止运动,设运动的时间为x秒
(1)当点P在线段AO上运动时.
①请用含x的代数式表示OP的长度;
②若记四边形PBEQ的面积为y,求y关于x的函数关系式(不要求写出自变量的取值范围);
第24题图
(2)显然,当x=0时,四边形PBEQ即梯形ABED,请问,当P在线段AC的其他位置时,以P,B,E,Q为顶点的四边形能否成为梯形?若能,求出所有满足条件的x的值;若不能,请说明理由.
北京市2011年北京市解密预测中考模拟
数学试卷答案
一. 仔细选一选 (每小题3分, 共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案 B C D D B C C A C D
二. 认真填一填 (每小题4分, 共24分)
11. ; 12. 4,0 ; 13. ; 14. 108 15、 7秒或17秒; 16. 18.
三、解答题(共8小题,计66分,解答应写出过程)
17.(本题满分6分)解: = …… 4分
当 x= 时 …………………… 1分 , 原式=2 ………………1分
18、(本题满分6分)
(1)60人……………… 1分, 众数=20元………… 1分,
中位数=15元……………… 1分;(2)108o…………… 1分;
(3)300人 , 6000元………………… 2分
19.(本题满分6分)
(1) 因为 , 又 是 的中点, 所以可以证明 , 所以有 , 又 , 所以可得 是 的中点; ………3分
(2) 四边形 应该是矩形.
因为 , 是 的中点, 所以 , 而四边形 是平行四边形, 所以四边形 是矩形. ……………3分
20.(本题满分8分)
解:(1) ………………………2分
(2)由表可以看出:出现有理数的次数为5次,
出现无理数的次数为4次,所以小军获胜的概率为5/9>小明的4/9。
此游戏规则对小军有利。…………………6分
21.(本题满分8分)
解:(1) CE: ;……………4分
(2) ;………………………4分
22.(本题满分10分)(1)直线 和 相切.……………………1分
证明:
∵ , ,∴ .
∵ ,∴ .∴ .
即 .∴直线 和 相切.……………………………………4分
(2)连接 .∵AB是直径,∴ .
在 中, ,∴ .
∵直径 ,∴OB=5 BC=8. ∵ OF ∴ BF=4 OF=3
由三角形相似得DF= ∴S = ………………………5分(若用其他方法酬情给分)
23.(本题满分10分)
(1)解:设今年三月份甲种电脑每台售价 元
解得: ………………2分
经检验: 是原方程的根……………………1分
所以甲种电脑今年三月份每台售价4000元
(2)设购进甲种电脑 台
…………………2分
解得 ………………………………………………1分
因为 的正整数解为6,7,8,9,10,所以共有5种进货方案 ……………1分
(3)设总获利为 元
………2分
当 时,(2)中所有方案获利相同………………1分
24.(本小题满分12分)
解:(1)①由题意得∠BAO=30°,AC⊥BD
∵AB=2 ∴OB=OD=1,OA=OC=
∴OP= ……… ……2分
②过点E作EH⊥BD,则EH为△COD的中位线
∴ ∵DQ=x ∴BQ=2-x
∴
…………………………3分 (2)能成为梯形,分三种情况:
当PQ∥BE时,∠PQO=∠DBE=30°
∴
即 ∴x=
此时PB不平行QE,∴x= 时,四边形PBEQ为梯形. …………………………2分
当PE∥BQ时,P为OC中点
∴AP= ,即
∴
此时,BQ=2-x= ≠PE,∴x= 时,四边形PEQB为梯形. …………………………2分
当EQ∥BP时,△QEH∽△BPO
∴ ∴
∴x=1(x=0舍去)
此时,BQ不平行于PE,
∴x=1时,四边形PEQB为梯形. ………………………………2分
综上所述,当x= 或 或1时,以P,B,E,Q为顶点的四边形是梯形.……………1分