- 688.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
几何综合题 2013年二模
24.房山二,(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,联结AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;
(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,联结BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;
(3)如图3,在(2)的条件下,联结GF、HD.
求证:①FG+BE≥BF;
②∠HGF=∠HDF.
第21题图3
第24题图2
第24题图1
24.大,已知:如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AB =,AD = 3,BC = 4,以点D为旋转中心,将腰DC逆时针旋转а至DE.
(1)当а=90°时,连结AE,则△EAD的面积等于___________(直接写出结果);
(2)当0°<а< 180°时,连结BE,请问BE能否取得最大值,若能,请求出BE的最大值;若不能,请说明理由;
(3)当0°<а< 180°时,连结CE,请问а为多少度时,△CDE的面积是.
24.丰台,在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.
(1)当点O为AC中点时,
①如图1, 三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明);
②如图2, 三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;
(2)当点O不是AC中点时,如图3,,三角板的两直角边分别交AB,BC于E、F两点,若, 求的值.
C
O
B
A
O
E
图1
F
B
A
O
C
E
F
A
B
C
E
F
图2
图3
24.石,如图,四边形、是两个边长分别为5和1且中心重合的正方形.其中,正方形可以绕中心旋转,正方形静止不动.
(1)如图1,当四点共线时,四边形的面积为 __;
(2)如图2,当三点共线时,请直接写出= _________;
(3)在正方形绕中心旋转的过程中,直线与直线的位置关系是______________,请借助图3证明你的猜想.
图1
图2
图3
解:
24顺,.如图,直线与线段相交于点, 点和点在直线上,且.
(1) 如图1所示,当点与点重合时 ,且,请写出与的数量关系和位置关系;
(2)将图1中的绕点顺时针旋转到如图2所示的位置,,(1)中的与的数量关系和位置关系是否仍然成立?若成立,请证明;若不成立,请说明理由;
(3)将图2中的拉长为的倍得到如图3,求的值.
24.东,在矩形中,,,是边上一点,交于点,过点作,交射线于点,交射线于点.
(1)如图1,当点与点重合时,求的长;
(2)如图2,当点在线段上时,设,,求与之间的函数关系式,并写出自变量的取值范围;
(3)连结,当以点E,F,H为顶点的三角形与△AEC相似时,求线段的长.
24.昌,(1)如图1,以AC为斜边的Rt△ABC和矩形HEFG摆放在直线l上(点B、C、E、F在直线l上),已知BC=EF=1,AB=HE=2. △ABC沿着直线l向右平移,设CE=x,△ABC与矩形HEFG重叠部分的面积为y(y≠0). 当x=时,求出y的值;
(2)在(1)的条件下,如图2,将Rt△ABC绕AC的中点旋转180°后与Rt△ABC形成一个新的矩形ABCD,当点C在点E的左侧,且x =2时,将矩形ABCD绕着点C顺时针旋转α角,将矩形HEFG绕着点E逆时针旋转相同的角度. 若旋转到顶点D、H重合时,连接AG,求点D到AG的距离;
(3)在(2)的条件下,如图3,当α=45°时,设AD与GH交于点M,CD与HE交于点N,求证:四边形MHND为正方形.
25. 朝,在□ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG =AG+BG;
(2)如图2,当EF与AB相交时,若∠EAB= α(0º﹤α﹤90º),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);
(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.
图3
图1
图2
24.海,如图1,在△ABC中,AB=AC,. 过点A作BC的平行线与∠ABC的平分线交于点D,连接CD.
图1 图2
(1)求证:;
(2)点为线段延长线上一点,将射线GC绕着点G逆时针旋转,与射线BD交于点E.
①若,,如图2所示,求证:;[来源:学*科*网Z*X*X*K]
②若,,请直接写出的值(用含的代数式表示).
24.西,在△ABC中,AB=AC,AD,CE分别平分∠BAC和∠ACB,且AD与CE交于点M.点N在射线AD上,且NA=NC.过点N作NF⊥CE于点G,且与AC交于点F,再过点F作FH∥CE,且与AB交于点H.
(1) 如图1,当∠BAC=60°时,点M,N,G重合.
①请根据题目要求在图1中补全图形;
②连结EF,HM,则EF与HM的数量关系是__________;
(2) 如图2,当∠BAC=120°时,求证:AF=EH;
图1
图2
备用图
(3) 当∠BAC=36°时,我们称△ABC为“黄金三角形”,此时.若EH=4,直接写出GM的长.
24.门,已知:在△AOB与△COD中,OA=OB,OC=OD,.
(1)如图1,点C、D分别在边OA、OB上,连结AD、BC,点M为线段BC的中点,连结OM,则线段AD与OM之间的数量关系是 ,位置关系是 ;
(2)如图2,将图1中的△COD绕点逆时针旋转,旋转角为 ().连结AD、BC,点M为线段BC的中点,连结OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;
(3)如图3,将图1中的 △COD绕点 O逆时针旋转到使 △COD的一边OD恰好与
△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点.
请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.
24.密,如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边
上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?
若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=时,求线段BG的长.