- 637.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年黑龙江省哈尔滨市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.﹣7的倒数是( )
A.7 B.﹣7 C. D.﹣
2.下列运算正确的是( )
A.a6÷a3=a2 B.2a3+3a3=5a6 C.(﹣a3)2=a6 D.(a+b)2=a2+b2
3.下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.抛物线y=﹣(x+)2﹣3的顶点坐标是( )
A.(,﹣3) B.(﹣,﹣3) C.(,3) D.(﹣,3)
5.五个大小相同的正方体搭成的几何体如图所示,其左视图是( )
A. B. C. D.
6.方程=的解为( )
A.x=3 B.x=4 C.x=5 D.x=﹣5
7.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是( )
A.43° B.35° C.34° D.44°
8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是( )
A. = B. = C. = D. =
10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是( )
A.小涛家离报亭的距离是900m
B.小涛从家去报亭的平均速度是60m/min
C.小涛从报亭返回家中的平均速度是80m/min
D.小涛在报亭看报用了15min
二、填空题(本大题共10小题,每小题3分,共30分)
11.将57600000用科学记数法表示为 .
12.函数y=中,自变量x的取值范围是 .
13.把多项式4ax2﹣9ay2分解因式的结果是 .
14.计算﹣6的结果是 .
15.已知反比例函数y=的图象经过点(1,2),则k的值为 .
16.不等式组的解集是 .
17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 .【来源:21cnj*y.co*m】
18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为 .
19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为 .【出处:21教育名师】
20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为 .
三、解答题(本大题共60分)
21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.
22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;
(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.
23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.
24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图1,求证:AE=BD;
(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.
25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.
(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;
(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?
26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.
(1)如图1,求证:AD=BD;
(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;
(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.
27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.
(1)求抛物线的解析式;
(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥
AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.
2017年黑龙江省哈尔滨市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分)
1.﹣7的倒数是( )
A.7 B.﹣7 C. D.﹣
【考点】17:倒数.
【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.
【解答】解:﹣7的倒数是﹣,
故选:D.
2.下列运算正确的是( )
A.a6÷a3=a2 B.2a3+3a3=5a6 C.(﹣a3)2=a6 D.(a+b)2=a2+b2
【考点】4I:整式的混合运算.
【分析】各项计算得到结果,即可作出判断.
【解答】解:A、原式=a3,不符合题意;
B、原式=5a3,不符合题意;
C、原式=a6,符合题意;
D、原式=a2+2ab+b2,不符合题意,
故选C
3.下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C.
D.
【考点】R5:中心对称图形;P3:轴对称图形.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;
B、是轴对称图形,不是中心对称图形,不合题意;
C、不是轴对称图形,是中心对称图形,不合题意;
D、是轴对称图形,也是中心对称图形,符合题意.
故选:D.
4.抛物线y=﹣(x+)2﹣3的顶点坐标是( )
A.(,﹣3) B.(﹣,﹣3) C.(,3) D.(﹣,3)
【考点】H3:二次函数的性质.
【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.
【解答】解:y=﹣(x+)2﹣3是抛物线的顶点式,
根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).
故选B.
5.五个大小相同的正方体搭成的几何体如图所示,其左视图是( )
A. B. C. D.
【考点】U2:简单组合体的三视图.
【分析】根据从左边看得到的图形是左视图,可得答案.
【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,
故选:C.
6.方程=的解为( )
A.x=3 B.x=4 C.x=5 D.x=﹣5
【考点】B3:解分式方程.
【分析】根据分式方程的解法即可求出答案.
【解答】解:2(x﹣1)=x+3,
2x﹣2=x+3,
x=5,
令x=5代入(x+3)(x﹣1)≠0,
故选(C)
7.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是( )
A.43° B.35° C.34° D.44°
【考点】M5:圆周角定理.
【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.
【解答】解:∵∠D=∠A=42°,
∴∠B=∠APD﹣∠D=35°,
故选B.
8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
【考点】T1:锐角三角函数的定义.
【分析】利用锐角三角函数定义求出cosB的值即可.
【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC==,
则cosB==,
故选A
9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是( )
A. = B. = C. = D. =
【考点】S9:相似三角形的判定与性质.
【分析】根据相似三角形的判定与性质即可求出答案.
【解答】解:(A)∵DE∥BC,
∴△ADE∽△ABC,
∴,故A错误;
(B)∵DE∥BC,
∴,故B错误;
(C)∵DE∥BC,
,故C正确;
(D))∵DE∥BC,
∴△AGE∽△AFC,
∴=,故D错误;
故选(C)
10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是( )21cnjy.com
A.小涛家离报亭的距离是900m
B.小涛从家去报亭的平均速度是60m/min
C.小涛从报亭返回家中的平均速度是80m/min
D.小涛在报亭看报用了15min
【考点】E6:函数的图象.
【分析】根据特殊点的实际意义即可求出答案.
【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;
B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;
C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;21教育网
D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;
故选:D.
二、填空题(本大题共10小题,每小题3分,共30分)
11.将57600000用科学记数法表示为 5.67×107 .
【考点】1I:科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2·1·c·n·j·y
【解答】解:57600000用科学记数法表示为5.67×107,
故答案为:5.67×107.
12.函数y=中,自变量x的取值范围是 x≠2 .
【考点】E4:函数自变量的取值范围.
【分析】根据分式有意义的条件:分母不为0进行解答即可.
【解答】解:由x﹣2≠0得,x≠2,
故答案为x≠2.
13.把多项式4ax2﹣9ay2分解因式的结果是 a(2x+3y)(2x﹣3y) .
【考点】55:提公因式法与公式法的综合运用.
【分析】原式提取公因式,再利用平方差公式分解即可.
【解答】解:原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),
故答案为:a(2x+3y)(2x﹣3y)
14.计算﹣6的结果是 .
【考点】78:二次根式的加减法.
【分析】先将二次根式化简即可求出答案.
【解答】解:原式=3﹣6×=3﹣2=
故答案为:
15.已知反比例函数y=的图象经过点(1,2),则k的值为 1 .
【考点】G6:反比例函数图象上点的坐标特征.
【分析】直接把点(1,2)代入反比例函数y=,求出k的值即可.
【解答】解:∵反比例函数y=的图象经过点(1,2),
∴2=3k﹣1,解得k=1.
故答案为:1.
16.不等式组的解集是 2≤x<3 .
【考点】CB:解一元一次不等式组.
【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【解答】解:,
由①得:x≥2,
由②得:x<3,
则不等式组的解集为2≤x<3.
故答案为2≤x<3.
17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 .21·世纪*教育网
【考点】X4:概率公式.
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【版权所有:21教育】
【解答】解:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,
∴摸出的小球是红球的概率为;
故答案为:.
18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为 90° .
【考点】MN:弧长的计算.
【分析】利用扇形的弧长公式计算即可.
【解答】解:设扇形的圆心角为n°,
则=4π,
解得,n=90,
故答案为:90°.
19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为 4或2 .21*cnjy*com
【考点】L8:菱形的性质.
【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.
【解答】解:∵四边形ABCD是菱形,
∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,
∵∠BAD=60°,
∴△ABD是等边三角形,
∴BD=AB=6,
∴OB=BD=3,
∴OC=OA==3,
∴AC=2OA=6,
∵点E在AC上,OE=,
∴CE=OC+或CE=OC﹣,
∴CE=4或CE=2;
故答案为:4或2.
20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为 .
【考点】LB:矩形的性质;KD:全等三角形的判定与性质.
【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.
【解答】解:∵四边形ABCD是矩形,
∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,
∴∠AMB=∠DAE,
∵DE=DC,
∴AB=DE,
∵DE⊥AM,
∴∠DEA=∠DEM=90°,
在△ABM和△DEA中,,
∴△ABM≌△DEA(AAS),
∴AM=AD,
∵AE=2EM,
∴BC=AD=3EM,
连接DM,如图所示:
在Rt△DEM和Rt△DCM中,,
∴Rt△DEM≌Rt△DCM(HL),
∴EM=CM,
∴BC=3CM,
设EM=CM=x,则BM=2x,AM=BC=3x,
在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,
解得:x=,
∴BM=;
故答案为:.
三、解答题(本大题共60分)
21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.
【考点】6D:分式的化简求值;T5:特殊角的三角函数值.
【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【解答】解:÷﹣
=
=
=,
当x=4sin60°﹣2=4×=﹣2时,原式=.
22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;
(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.
【考点】N4:作图—应用与设计作图;KQ:勾股定理;L6:平行四边形的判定;T7:解直角三角形.
【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;
(2)扇形根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;
【解答】解:(1)△ABC如图所示;
(2)平行四边形ABDE如图所示,CD==.
23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:www.21-cn-jy.com
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.
【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.
【分析】(1)根据条形统计图与扇形统计图求出总人数即可;
(2)根据题意作出图形即可;
(3)根据题意列出算式,计算即可得到结果.
【解答】解:(1)10÷20%=50(名),
答:本次调查共抽取了50名学生;
(2)50﹣10﹣20﹣12=8(名),
补全条形统计图如图所示,
(3)1350×=540(名),
答:估计最喜欢太阳岛风景区的学生有540名.
24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图1,求证:AE=BD;
(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.
【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.
【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;
(2)根据条件即可判断图中的全等直角三角形;
【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,
∠ACB=∠DCE=90°,
∴AC=BC,DC=EC,
∴∠ACB+∠ACD=∠DCE+∠ACD,
∴∠BCD=∠ACE,
在△ACE与△BCD中,
∴△ACE≌△BCD(SAS),
∴AE=BD,
(2)∵AC=DC,
∴AC=CD=EC=CB,
△ACB≌△DCE(SAS);
由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC
∴∠DOM=90°,
∵∠AEC=∠CAE=∠CBD,
∴△EMC≌△BCN(ASA),
∴CM=CN,
∴DM=AN,
△AON≌△DOM(AAS),
∵DE=AB,AO=DO,
∴△AOB≌△DOE(HL)
25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.
(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;
(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?21·cn·jy·com
【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.
【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;【来源:21·世纪·教育·网】
(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.www-2-1-cnjy-com
【解答】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得
,
解得:
答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.
(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得
200a+100(34﹣a)≥4000,
解得:a≥6
答:威丽商场至少需购进6件A种商品.
26.已知:AB是⊙O的弦,点C是
的中点,连接OB、OC,OC交AB于点D.
(1)如图1,求证:AD=BD;
(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;2-1-c-n-j-y
(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.
【考点】MR:圆的综合题.
【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;
(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;
(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠
MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.
【解答】(1)证明:如图1,连接OA,
∵C是的中点,
∴,
∴∠AOC=∠BOC,
∵OA=OB,
∴OD⊥AB,AD=BD;
(2)证明:如图2,延长BO交⊙O于点T,连接PT
∵BT是⊙O的直径
∴∠BPT=90°,
∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,
∵BM是⊙O的切线,
∴OB⊥BM,
又∠OBA+∠MBA=90°,
∴∠ABO=∠OMB
又∠ABO=∠APT
∴∠APB﹣90°=∠OMB,
∴∠APB﹣∠OMB=90°;
(3)解:如图3,连接MA,
∵MO垂直平分AB,
∴MA=MB,
∴∠MAB=∠MBA,
作∠PMG=∠AMB,
在射线MG上截取MN=MP,
连接PN,BN,
则∠AMP=∠BMN,
∴△APM≌△BNM,
∴AP=BN,∠MAP=∠MBN,
延长PD至点K,
使DK=DP,
连接AK、BK,
∴四边形APBK是平行四边形;
AP∥BK,
∴∠PAB=∠ABK,∠APB+∠PBK=180°,
由(2)得∠APB﹣(90°﹣∠MBA)
=90°,
∴∠APB+∠MBA=180°
∴∠PBK=∠MBA,
∴∠MBP=∠ABK=∠PAB,
∴∠MAP=∠PBA=∠MBN,
∴∠NBP=∠KBP,
∵PB=PB,
∴△PBN≌△PBK,
∴PN=PK=2PD,
过点M作MH⊥PN于点H,
∴PN=2PH,
∴PH=DP,∠PMH=∠ABO,
∵sin∠PMH=,sin∠ABO=,
∴,
∴,设DP=3a,则PM=5a,
∴MQ=6DP=18a,
∴.
27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.
(1)求抛物线的解析式;
(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥
AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);21世纪教育网版权所有
(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.21*cnjy*com
【考点】HF:二次函数综合题.
【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;
(2)根据S△ABC=S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;
(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD于点K,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBQ≌△OCH,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥
x轴于E′交CD于点F′,得到P(t,﹣ t﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.21教育名师原创作品
【解答】解:(1)∵直线y=x﹣3经过B、C两点,
∴B(3,0),C(0,﹣3),
∵y=x2+bx+c经过B、C两点,
∴,
解得,
故抛物线的解析式为y=x2﹣2x﹣3;
(2)如图1,y=x2﹣2x﹣3,
y=0时,x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
∴A(﹣1,0),
∴OA=1,OB=OC=3,
∴∠ABC=45°,AC=,AB=4,
∵PE⊥x轴,
∴∠EMB=∠EBM=45°,
∵点P的横坐标为1,
∴EM=EB=3﹣t,
连结AM,
∵S△ABC=S△AMC+S△AMB,
∴AB•OC=AC•MN+AB•EM,
∴×4×3=×d+×4(3﹣t),
∴d=t;
(3)如图2,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴对称轴为x=1,
∴由抛物线对称性可得D(2,﹣3),
∴CD=2,
过点B作BK⊥CD交直线CD于点K,
∴四边形OCKB为正方形,
∴∠OBK=90°,CK=OB=BK=3,
∴DK=1,
∵BQ⊥CP,
∴∠CQB=90°,
过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,
∴∠OHC=∠OIQ=∠OIB=90°,
∴四边形OHQI为矩形,
∵∠OCQ+∠OBQ=180°,
∴∠OBQ=∠OCH,
∴△OBQ≌△OCH,
∴QG=OS,∠GOB=∠SOC,
∴∠SOG=90°,
∴∠ROG=45°,
∵OR=OR,
∴△OSR≌△OGR,
∴SR=GR,
∴SR=CS+BR,
∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,
∴∠BOR=∠TBK,
∴tan∠BOR=tan∠TBK,
∴=,
∴BR=TK,
∵∠CTQ=∠BTK,
∴∠QCT=∠TBK,
∴tan∠QCT=tan∠TBK,
设ST=TD=m,
∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,
在Rt△SKR中,
∵SK2+RK2=SR2,
∴(2m+1)2+(2﹣m)2=(3﹣m)2,
解得m1=﹣2(舍去),m2=;
∴ST=TD=,TK=,
∴tan∠TBK==÷3=,
∴tan∠PCD=,
过点P作PE′⊥x轴于E′交CD于点F′,
∵CF′=OE′=t,
∴PF′=t,
∴PE′=t+3,
∴P(t,﹣ t﹣3),
∴﹣t﹣3=t2﹣2t﹣3,
解得t1=0(舍去),t2=.
∴MN=d=t=×=.
2017年7月5日