• 923.50 KB
  • 2021-05-10 发布

2016年益阳中考数学试卷附答案

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
益阳市2016年普通初中毕业学业考试试卷 数 学 一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1. 的相反数是 A. B. C. D.‎ ‎2.下列运算正确的是 A. B. C. D. ‎ ‎3.不等式组 的解集在数轴上表示正确的是 A B C D ‎4.下列判断错误的是 A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形 C.四条边都相等的四边形是菱形 D.两条对角线垂直且平分的四边形是正方形 ‎5.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为 A.67、68 B.67、67 C.68、68 D.68、67‎ ‎6.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是 A.360° B.540° C.720° D.900°‎ ‎7.关于抛物线,下列说法错误的是 ‎ A.开口向上 B.与轴有两个重合的交点 C.对称轴是直线 D.当时,随的增大而减小 ‎8.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠(为水平线),测角仪的高度为1米,则旗杆PA的高度为 A. B. ‎ C. D.‎ 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)‎ ‎9.将正比例函数的图象向上平移3个单位,所得的直线不经过第 象限.‎ ‎10.某学习小组为了探究函数的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的= .‎ ‎…‎ ‎–2‎ ‎–1.5‎ ‎–1‎ ‎–0.5‎ ‎0‎ ‎0.5‎ ‎1‎ ‎1.5‎ ‎2‎ ‎…‎ ‎…‎ ‎2‎ ‎0.75‎ ‎0‎ ‎–0.25‎ ‎0‎ ‎–0.25‎ ‎0‎ ‎2‎ ‎…‎ ‎11.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数的图象上有一些整点,请写出其中一个整点的坐标 .‎ ‎12.下图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为 .(结果保留) ‎ ‎6‎ ‎4‎ 主视图 左视图 俯视图 ‎ ‎ 第12题图 第13题图 ‎13.如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为 .‎ ‎14.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是 枚. ‎ ‎ ‎ ‎(1) (2) (3) (4) (5)‎ 三、解答题(本大题共3小题,每小题8分,共24分)‎ ‎15.计算:.‎ ‎16.先化简,再求值:,其中.‎ 第17题图 ‎17.如图,在ABCD中,AE⊥BD于E,‎ CF⊥BD于F, 连接AF,CE.‎ 求证:AF=CE.‎ 四、解答题(本大题共3小题,每小题10分,共30分) ‎ ‎18.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:‎ ‎(1)频数分布表中a = ,b= ,并将统计图补充完整;‎ ‎(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?‎ ‎(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?‎ 分 组 频数 频率 第一组()‎ ‎3[来源:学科网]‎ ‎0.15‎ 第二组()‎ ‎6‎ a 第三组()‎ ‎7‎ ‎0.35‎ 第四组()‎ b ‎0.20‎ ‎19.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.‎ ‎(1)该班男生和女生各有多少人?‎ ‎(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?‎ ‎20.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.‎ 根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x 作AD⊥BC于D,设BD = x,用含x的代数式表示CD 利用勾股定理求出AD的长,再计算三角形面积 某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.‎ ‎ ‎ ‎ ‎ ‎ ‎ 五、解答题(本题满分12分)‎ ‎21.如图,顶点为的抛物线经过坐标原点O,与轴交于点B.‎ ‎(1)求抛物线对应的二次函数的表达式;‎ ‎(2)过B作OA的平行线交轴于点C,‎ 交抛物线于点,求证:△OCD≌△OAB;‎ ‎(3)在轴上找一点,使得△PCD的 周长最小,求出P点的坐标.‎ ‎[来源:学科网ZXXK]‎ 六、解答题(本题满分14分)‎ ‎22.如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD 的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).‎ ‎(1)计算矩形EFGH的面积;‎ ‎(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;‎ ‎(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形,将矩形绕点按顺时针方向旋转,当落在CD上时停止转动,旋转后的矩形记为矩形,设旋转角为,求的值.‎ ‎ ‎ 图①‎ 图②(备用)‎ 图③‎ ‎2016年普通初中毕业学业考试参考答案及评分标准 数 学 一、选择题(本大题共8小题,每小题5分,共40分).‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ 答案[来源:学*科*网]‎ C B A D C D D ‎ A 二、填空题(本大题共6小题,每小题5分,共30分).‎ ‎9.四;10.0.75;11.答案不唯一,如:(-3,1);12.;13.115°;14.13.‎ 三、解答题(本大题共3小题,每小题8分,共24分).‎ ‎15.解:原式===.…………………………………8分 ‎ 16.解:原式. …………………………………6分 当时,原式=4. ………………………………………………8分 ‎17.证明:如图,∵四边形ABCD是平行四边形, ‎ ‎ ∴AD=BC,∠ADB=∠CBD. …………………………………2分 ‎ 又∵AE⊥BD,CF⊥BD,‎ ‎∴∠AED=∠CFB,AE∥CF. …………4分 ‎∴≌.………………………6分 ‎∴AE=CF.‎ ‎ ∴四边形AECF是平行四边形.‎ ‎∴AF=CE. ………………………………………………………8分 四、解答题(本大题共3小题,每小题10分,共30分) ‎ ‎18.解:(1)a=0.3,b=4 ………………………………………………………2分 ‎…………………………………4分 ‎(2)(人) …………………………………7分 ‎(3) 甲 乙1 乙2‎ 甲1 甲2 甲3 乙 甲1 甲2 甲3 乙 甲1 甲2 甲3 乙 ‎ ……………………………………………………………10分 ‎19.解:(1)设该班男生有人,女生有人,‎ ‎ 依题意得:, 解得.‎ ‎∴该班男生有27人,女生有15人.…………………………………5分 ‎(2)设招录的男生为名,则招录的女生为名,‎ 依题意得: ,解之得,, ‎ ‎ 答:工厂在该班至少要招录22名男生.…………………………10分 ‎20.解:如图,在△ABC中,AB=15,BC=14,AC=13,‎ ‎ 设,∴. ……………………………………………2分 ‎ 由勾股定理得:, ‎ ‎ ,‎ ‎∴,‎ 解之得:.……………………………… 7分 ‎∴. ………………………………………8分 ‎ ‎∴.…………10分 五、解答题(本题满分12分) ‎ ‎21.解:(1)∵抛物线顶点为,‎ ‎ 设抛物线对应的二次函数的表达式为,‎ ‎ 将原点坐标(0,0)代入表达式,得. ‎ ‎ ∴抛物线对应的二次函数的表达式为:. …………3分 ‎(2)将 代入中,得B点坐标为:, ‎ 设直线OA对应的一次函数的表达式为, ‎ 将代入表达式中,得, ‎ ‎∴直线OA对应的一次函数的表达式为.‎ ‎∵BD∥AO,设直线BD对应的一次函数的表达式为,‎ 将B代入中,得 ,‎ ‎∴直线BD对应的一次函数的表达式为.‎ 由得交点D的坐标为,‎ 将代入中,得C点的坐标为,‎ 由勾股定理,得:OA=2=OC,AB=2=CD, . ‎ 在△OAB与△OCD中,, ∴△OAB≌△OCD.……………………8分 ‎(3)点关于轴的对称点的坐标为,则与轴的交点即为点,它使得△PCD的周长最小.‎ 过点D作DQ⊥,垂足为Q,则PO∥DQ.∴∽.‎ ‎∴,即,∴,‎ ‎∴ 点的坐标为.………………………………………………………12分 六、解答题(本题满分14分)‎ ‎22. 解:(1)如22题解图1,在中,‎ ‎∠ACB=90°,∠B=30°,AC=1,∴AB=2, ‎ ‎22题解图1‎ 又∵D是AB的中点,∴AD=1,.‎ 又∵EF是的中位线,∴, ‎ 在中,AD=CD, ∠A=60°,‎ ‎∴∠ADC=60°.‎ 在中,60°,‎ ‎∴矩形EFGH的面积. ……………………………3分 ‎(2)如22题解图2,设矩形移动的距 离为则,‎ ‎22题解图2‎ 当矩形与△CBD重叠部分为三角形时,‎ 则,‎ ‎, ∴.(舍去).‎ 当矩形与△CBD重叠部分为直角梯形时,则,‎ 重叠部分的面积S=, ∴. ‎ 即矩形移动的距离为时,矩形与△CBD重叠部分的面积是.…………8分 ‎(3)如22题解图3,作于.‎ 设,则,又,. ‎ 在Rt△H2QG1中, ,‎ 解之得(负的舍去).‎ ‎∴.……………………………………14分 ‎22题解图3‎