数学中考每日一练 3页

  • 48.05 KB
  • 2021-05-10 发布

数学中考每日一练

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
数学中考每日一练 如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D.‎ ‎(1)求抛物线的解析式;‎ ‎(2)设点M(1,m),当MB+MD的值最小时,求m的值;‎ ‎(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;‎ ‎(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.‎ ‎【分析】(1)根据待定系数法,可得答案;‎ ‎(2)利用轴对称求最短路径的知识,找到B点关于直线x=1的对称点B′,连接B'D,B'D与直线x=1的交点即是点M的位置,继而求出m的值.‎ ‎(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减去较小的纵坐标,可得PE的长,根据三角形的面积,可得二次函数,根据二次函数的性质,可得答案;‎ ‎(4)设出点E的,分情况讨论,①当点E在线段AC上时,点F在点E上方,②当点E在线段AC(或CA)延长线上时,点F在点E下方,根据平行四边形的性质,可得关于x的方程,继而求出点E的坐标.‎ ‎【解答】解:(1)将A,B,C点的坐标代入解析式,得 ‎,‎ 解得,‎ 抛物线的解析式为y=﹣x2﹣2x+3‎ ‎(2)配方,得y=﹣(x+1)2+4,顶点D的坐标为(﹣1,4)‎ 作B点关于直线x=1的对称点B′,如图1,‎ 则B′(4,3),由(1)得D(﹣1,4),‎ 可求出直线DB′的函数关系式为y=﹣x+,‎ 当M(1,m)在直线DN′上时,MN+MD的值最小,‎ 则m=﹣×1+=.‎ ‎(3)作PE⊥x轴交AC于E点,如图2,‎ AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),E(m,m+3),‎ PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m S△APC=PE•|xA|=(﹣m2﹣3m)×3=﹣(m+)2+,‎ 当m=﹣时,△APC的面积的最大值是;‎ ‎(4)由(1)、(2)得D(﹣1,4),N(﹣1,2)‎ 点E在直线AC上,设E(x,x+3),‎ ‎①当点E在线段AC上时,点F在点E上方,则F(x,﹣x2﹣2x+3),‎ ‎∵EF=DN ‎∴﹣x2﹣2x+3﹣(x+3)=4﹣2=2,‎ 解得,x=﹣2或x=﹣1(舍去),‎ 则点E的坐标为:(﹣2,1).‎ ‎②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,﹣x2﹣2x+3),‎ ‎∵EF=DN,‎ ‎∴(x+3)﹣(﹣x2﹣2x+3)=2,‎ 解得x=或x=,‎ 即点E的坐标为:(,)或(,)‎ 综上可得满足条件的点E为E(﹣2,1)或:(,)或(,).‎ ‎【点评】本题考查了二次函数的综合题,解(1)的关键是待定系数法,解(2)利用轴对称求最短路径;解(3)的关键是利用三角形的面积得出二次函数;解(4)的关键是平行四边形的性质得出关于x的方程,要分类讨论,以防遗漏.‎