• 751.00 KB
  • 2021-05-10 发布

有关中考数学试题分类大全直角三角形与勾股定理

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ 一、选择题 ‎1.(2010 浙江台州市)如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,‎ 则AP长不可能是(▲)‎ C A B P ‎ ‎ ‎(第3题)‎ A.2.5 B.3 C.4 D.5 ‎ ‎【答案】A ‎ ‎2.(2010山东临沂)如图,和都是边长为4的等边三角形,点、、在同一条直线上,连接,则的长为 ‎(第13题图)‎ ‎(A)(B)(C)(D)‎ ‎【答案】D ‎ ‎3.(2010 四川泸州)在△ABC中,AB=6,AC=8,BC=10,则该三角形为( )‎ A.锐角三角形 B.直角三角形 ‎ C. 钝角三角形 D.等腰直角三角形 ‎【答案】B ‎ ‎4.(2010 广西钦州市)如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm, ‎ 现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为 ‎(A)4 cm (B)5 cm (C)6 cm (D)10 cm 第15题 ‎【答案】B ‎5.(2010广西南宁)图1中,每个小正方形的边长为1,的三边的大小关系式:‎ ‎ (A) (B) ‎ ‎(C) (D) 图1‎ ‎【答案】C ‎ ‎6.(2010广东湛江)下列四组线段中,可以构成直角三角形的是( )‎ A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6‎ ‎【答案】C ‎ 二、填空题 ‎1.(10湖南益阳)如图4,在△ABC中,AB=AC=8,AD是底边上的高,E为AC中点,则DE=   .‎ ‎【答案】4‎ ‎2.(2010辽宁丹东市)已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是 .‎ 第15题图 ‎【答案】‎ ‎3.(2010 浙江省温州)勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边_PQ上,那么APQR的周长等于 .‎ ‎【答案】‎ ‎4.(2010四川宜宾)已知,在△ABC中,∠A= 45°,AC= ,AB= +1,则边BC的长为 .‎ ‎【答案】2‎ ‎5.(2010湖北鄂州)如图,四边形ABCD中,AB=AC=AD,E是CB的中点,AE=EC,∠BAC=3∠DBC,BD=,则AB= .‎ ‎【答案】12‎ ‎6.(2010河南)如图,Rt△ABC中,∠C=, ∠ABC=,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是 .‎ ‎【答案】2≦ AD < 3‎ ‎7.(2010四川乐山)如图(4),在Rt△ABC中,CD是斜边AB上的高,∠ACD=40°,则∠EBC=______.‎ ‎【答案】140°‎ ‎8.(2010四川乐山)勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.图(6)是一棵由正方形和含30°角的直角三角形按一定规律长成的勾股树,树主干自下而上第一个正方形和第一个直角三角形的面积之和为S1,第二个正方形和第二个直角三角形的面积之和为S2,…,第n个正方形和第n个直角三角形的面积之和为Sn.设第一个正方形的边长为1.‎ 图(6)‎ 请解答下列问题:‎ ‎(1)S1=__________;‎ ‎(2)通过探究,用含n的代数式表示Sn,则Sn=__________.‎ ‎【答案】1+;(1+)·()n -1(n为整数)‎ ‎9.(2010 江苏镇江)如图,,DE过点C,且DE//AB,若 ‎,则 ‎∠A= ,∠B= .‎ ‎【答案】‎ ‎10.(2010 广西玉林、防城港)两块完全一样的含30角的三角板重叠在一起,若绕长直角边中点M转动,使上面一块的斜边刚好过下面一块的直角顶点,如图6,∠A=,AC=10,则此时两直角顶点C、间的距离是 。‎ ‎【答案】5‎ ‎11.(2010 福建泉州南安)将一副三角板摆放成如图所示,图中 度.‎ ‎ 全品中考网 ‎1‎ ‎(第10题图)‎ ‎【答案】120‎ ‎12.(2010 广西钦州市)一个承重架的结构如图所示,如果∠1=155°,那么∠2=_ ▲_°.‎ 第2题 ‎【答案】65‎ ‎13.(2010 山东淄博)如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出长度为的线段__________条.‎ ‎(第15题)‎ ‎【答案】8 ‎ ‎14.(2010年山西)在D是AB的中点,CD=4cm,‎ 则AB= cm。‎ ‎【答案】8‎ ‎15.(2010黑龙江绥化)Rt△ABC中,∠BAC=90°,AB=AC=2,以AC为一边,在△ABC外部作等腰直角三角形 ACD ,则线段BD的长为 。‎ ‎【答案】4或或 三、解答题 ‎1.(2010浙江杭州) (本小题满分10分) ‎ 如图,AB = 3AC,BD = 3AE,又BD∥AC,点B,A,E在同一条直线上. ‎ ‎(1) 求证:△ABD∽△CAE;‎ ‎(2) 如果AC =BD,AD =BD,设BD = a,求BC的长. ‎ ‎【答案】‎ ‎(1) ∵ BD∥AC,点B,A,E在同一条直线上, ∴ ÐDBA = ÐCAE,‎ 又∵ , ∴ △ABD∽△CAE. --- 4分 ‎(2) ∵AB = 3AC = 3BD,AD =2BD ,‎ ‎(第22题)‎ ‎ ∴ AD2 + BD2 = 8BD2 + BD2 = 9BD2 =AB2, ‎ ‎∴ÐD =90°, ‎ 由(1)得 ÐE =ÐD = 90°, ‎ ‎∵ AE=BD , EC =AD = BD , AB = 3BD ,‎ ‎∴在Rt△BCE中,BC2 = (AB + AE )2 + EC2 ‎ ‎= (3BD +BD )2 + (BD)2 = BD2 = 12a2 ,‎ ‎(第23题)‎ ‎ ∴ BC =a . --- 6分 ‎2.(2010 湖北孝感)(本题满分10分)‎ ‎[问题情境]‎ 勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。‎ ‎[定理表述]‎ 请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述);(3分)‎ ‎ [尝试证明]‎ 以图1中的直角三角形为基础,可以构造出以a、b为底,以为高的直角梯形(如图2),请你利用图2,验证勾股定理;(4分)‎ ‎[知识拓展]‎ 利用图2中的直角梯形,我们可以证明其证明步骤如下:‎ ‎= 。‎ 又∵在直角梯形ABCD中有BC AD(填大小关系),即 ,‎ ‎(3分)‎ ‎【答案】[定理表述]‎ 如果直角三角形的两直角边长分别为a、b,斜边长为c,那么 ‎ …………3分 说明:只有文字语言,没有符号语言给2分。‎ ‎[尝试证明]‎ ‎≌‎ 又 ‎ …………5分 整理,得 …………7分 ‎[知识拓展]‎ ‎ …………10分 ‎3.(2010 山东荷泽)(本题满分8分)如图所示,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5㎝,求AB的长.‎ ‎20题图 A B C D ‎【答案】解:∵在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线 ‎∴∠ABD=∠CBD=30°‎ ‎∴AD=DB 又∵Rt△CBD中,CD=5㎝ ‎∴BD=10㎝ ‎∴BC=㎝,AC=2BC=㎝