• 348.00 KB
  • 2021-05-10 发布

中考数学分类汇编动点问题含答案

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ 中考数学分类汇编 动点问题 ‎1.(2008年大连)如图12,直角梯形ABCD中,AB∥CD,∠A = 90°,CD = 3,AD = 4,tanB = 2,过点C作CH⊥AB,垂足为H.点P为线段AD上一动点,直线PM∥AB,交BC、CH于点M、Q.以PM为斜边向右作等腰Rt△PMN,直线MN交直线AB于点E,直线PN交直线AB于点F.设PD的长为x,EF的长为y.⑴求PM的长(用x表示);‎ ‎⑵求y与x的函数关系式及自变量x的取值范围(图13为备用图);‎ ‎⑶当点E在线段AH上时,求x的取值范围(图14为备用图). ‎ ‎2.如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒,△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.‎ ‎⑴求y1与x的函数关系,并在图2中画出y1的图象;‎ ‎⑵如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;‎ ‎⑶在图2中,点G是x轴正半轴上一点(0<OG<6=,过G作EF垂直于x轴,分别交y1、y2于点E、F.‎ ‎①说出线段EF的长在图1中所表示的实际意义;‎ ‎②当0<x<6时,求线段EF长的最大值.‎ 图1‎ C Q→ B D A P↓‎ 图2‎ G ‎2 4 6 8 10 ‎ ‎1210‎ ‎8‎ ‎6‎ ‎4‎ ‎2‎ y O x ‎3.如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).‎ ‎(1) 点A的坐标是__________,点C的坐标是__________;‎ ‎ (2) 当t= 秒或 秒时,MN=AC;‎ ‎(3) 设△OMN的面积为S,求S与t的函数关系式;‎ ‎(4) 探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.‎ 针对练习 一、选择题:‎ ‎1. 如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是( )‎ ‎ ‎ ‎ A、10 B、16 C、18 D、20‎ 二、填空题:‎ ‎1. 如上右图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.‎ 恒成立的结论有_______________________(把你认为正确的序号都填上)。‎ 参考答案 一、选择 A 二、填空:(1)(2)(3)(5)‎ 三、解答:‎ ‎2、解:⑴∵,CD=3,CQ=x,‎ ‎∴.‎ 图象如图所示.‎ ‎⑵方法一:,CP=8k-xk,CQ=x,‎ E G ‎2 4 6 8 10 ‎ ‎1210‎ ‎8‎ ‎6‎ ‎4‎ ‎2‎ y O x F ‎∴.‎ ‎∵抛物线顶点坐标是(4,12),‎ ‎∴.‎ 解得.‎ 则点P的速度每秒厘米,AC=12厘米.‎ 方法二:观察图象知,当x=4时,△PCQ面积为12.‎ 此时PC=AC-AP=8k-4k=4k,CQ=4.‎ ‎∴由,得 .解得.‎ 则点P的速度每秒厘米,AC=12厘米.‎ 方法三:设y2的图象所在抛物线的解析式是.‎ ‎∵图象过(0,0),(4,12),(8,0),‎ ‎∴ 解得 ‎ ‎∴. ①‎ ‎∵,CP=8k-xk,CQ=x,‎ ‎∴. ②‎ 比较①②得.‎ 则点P的速度每秒厘米,AC=12厘米.‎ ‎⑶①观察图象,知 线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积).‎ ‎②由⑵得 .(方法二,)‎ ‎∵EF=y2-y1,‎ ‎∴EF=,‎ ‎∵二次项系数小于0,‎ ‎∴在范围,当时,最大.‎ ‎3、解:(1)(4,0),(0,3); 2分 ‎(2) 2,6; 4分 ‎(3) 当0<t≤4时,OM=t.‎ 由△OMN∽△OAC,得,‎ ‎∴ ON=,S=. 6分 当4<t<8时,‎ 如图,∵ OD=t,∴ AD= t-4. ‎ 方法一:‎ 由△DAM∽△AOC,可得AM=,∴ BM=6-. 7分 由△BMN∽△BAC,可得BN==8-t,∴ CN=t-4. 8分 S=矩形OABC的面积-Rt△OAM的面积- Rt△MBN的面积- Rt△NCO的面积 ‎=12--(8-t)(6-)-‎ ‎=. 10分 方法二:‎ 易知四边形ADNC是平行四边形,∴ CN=AD=t-4,BN=8-t. 7分 由△BMN∽△BAC,可得BM==6-,∴ AM=. 8分 以下同方法一.‎ ‎ (4) 有最大值.‎ 方法一:‎ 当0<t≤4时,‎ ‎∵ 抛物线S=的开口向上,在对称轴t=0的右边, S随t的增大而增大,‎ ‎∴ 当t=4时,S可取到最大值=6; 11分 当4<t<8时,‎ ‎∵ 抛物线S=的开口向下,它的顶点是(4,6),∴ S<6. ‎ 综上,当t=4时,S有最大值6. 12分 方法二:‎ ‎∵ S= ‎ ‎∴ 当0<t<8时,画出S与t的函数关系图像,如图所示. 11分 显然,当t=4时,S有最大值6. 12分 说明:只有当第(3)问解答正确时,第(4)问只回答“有最大值”无其它步骤,可给1分;否则,不给分.‎