- 377.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
一线三等角
相似三角形判定的基本模型
A字型 X字型 反A字型 反8字型
母子型 旋转型 双垂直 三垂直
相似三角形判定的变化模型
一线三等角型相似三角形
三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:
等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。此规律需通过认真做题,细细体会。
C
A
D
B
E
F
典型例题
【例1】如图,等边△ABC中,边长为6,D是BC上动点,∠EDF=60°
(1)求证:△BDE∽△CFD
(2)当BD=1,FC=3时,求BE
C
D
E
A
B
F
【例2】如图,等腰△ABC中,AB=AC,D是BC中点,∠EDF=∠B,
求证:△BDE∽△DFE
A
B
P
C
M
【例3】如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;
(1)求证:△ABP∽△PCM;
(2)设BP=x,CM=y.求 y与x的函数解析式,并写出函数的定义域.
(3)当△APM为等腰三角形时, 求PB的长.
A
B
C
P
Q
【例4】(1)在中,,,点、分别在射线、上(点不与点、点重合),且保持.
①若点在线段上(如图),且,求线段的长;
②若,,求与之间的函数关系式,并写出函数的
定义域;
(2)正方形的边长为(如图12),点、分别在直线、上
(点不与点、点重合),且保持.
A
B
C
D
图12
当时,写出线段的长(不需要计算过程,请直接写出结果).
A
B
C
备用图
点评:此题是典型的图形变式题,记住口诀:“图形改变,方法不变”。动点在线段上时,通过哪两个三角形相似求解,当动点在线段的延长线上时,还是找原来的两个三角形,多数情况下这两个三角形还是相似的,还是可以沿用原来的方法求解。
【例5】已知:菱形ABCD,AB=4m, ∠B=60°,点P、Q分别从点B、C出发,沿线段BC、CD以1m/s的速度向终点C、D运动,运动时间为t秒
(1)连接AP、AQ、PQ,试判断△APQ的形状,并说明理由。
(2)当t=1秒时,连接AC,与PQ相交于点K.求AK的长。
(3) 当t=2秒时,连接AP、PQ,将∠APQ逆时针旋转,使角的两边与AB、AD、AC分别交于点E、N、F,连接EF.若AN=1,求S△EPF.
【应用】
1.如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,BC=1,AB=5,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD交AB于点D.
(1)直接写出点B的坐标 .
(2)当点P在线段OA上运动时,使得∠CPD=∠OAB,且BD: AD=3:2
,求点P的坐标.
2、已知在梯形ABCD中,AD∥BC,AD<BC,且BC =6,AB=DC=4,点E是AB的中点.
(1)如图,P为BC上的一点,且BP=2.求证:△BEP∽△CPD;
(2)如果点P在BC边上移动(点P与点B、C不重合),且满足∠EPF=∠C,PF交直线CD于点F,同时交直线AD于点M,那么
①当点F在线段CD的延长线上时,设BP=,DF=,求关于的函数解析式,并写出函数的定义域;②当时,求BP的长.
E
D
C
B
A
(备用图)
E
D
C
B
A
P
(第25题图)
模型训练:
A
B
C
D
E
1. 如图,在△ABC中,,,是边上的一个动点,点在边上,且.
(1) 求证:△ABD∽△DCE;
(2) 如果,,求与的函数解析式,并写出自变量的定义域;
(3) 当点是的中点时,试说明△ADE是什么三角形,并说明理由.
1. 已知:如图,在△ABC中,,,点D在边AB上,,点E在边BC上.又点F在边AC上,且.
(1) 求证:△FCE∽△EBD;
(2) 当点D在线段AB上运动时,是否有可能使.
如果有可能,那么求出BD的长.如果不可能请说明理由.
2. 如图,在△ABC中,AB=AC=5,BC=6,P是BC上一点,且BP=2,将一个大小与∠B相等的角的顶点放在P 点,然后将这个角绕P点转动,使角的两边始终分别与AB、AC相交,交点为D、E。
(1)求证△BPD∽△CEP
(2)是否存在这样的位置,△PDE为直角三角形?
C
P
E
A
B
D
若存在,求出BD的长;若不存在,说明理由。
A
B
C
D
E
F
1. 如图,在△ABC中,AB=AC=5,BC=6,P是BC上的一个动点(与B、C不重合),PE⊥AB与E,PF⊥BC交AC与F,设PC=x,记PE=,PF=
C
P
E
A
B
F
(1)分别求、关于x的函数关系式
(2)△PEF能为直角三角形吗?若能,求出CP的长,若不能,请说明理由。
2. 已知在等腰三角形中,,是的中点, 是上的动点(不与、重合),连结,过点作射线,使,射线交射线于点,交射线于点.
(1)求证:∽;
(2)设.
①用含的代数式表示;
②求关于的函数解析式,并写出的定义域.
C
D
A
B
P
3. 已知在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.
(1)如图8,P为AD上的一点,满足∠BPC=∠A.
①求证;△ABP∽△DPC
②求AP的长.
(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点E,同时交直线DC于点Q,那么
①当点Q在线段DC的延长线上时,设AP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域;
②当CE=1时,写出AP的长(不必写出解题过程)