- 370.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年湖南省怀化市中考数学试卷
一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.﹣2的倒数是( )
A.2 B.﹣2 C.﹣ D.
2.下列运算正确的是( )
A.3m﹣2m=1 B.(m3)2=m6 C.(﹣2m)3=﹣2m3 D.m2+m2=m4
3.为了贯彻习近平总书记提出的“精准扶贫”战略构想,怀化市2016年共扶贫149700人,将149700用科学记数法表示为( )
A.1.497×105 B.14.97×104 C.0.1497×106 D.1.497×106
4.下列说法中,正确的是( )
A.要了解某大洋的海水污染质量情况,宜采用全面调查方式
B.如果有一组数据为5,3,6,4,2,那么它的中位数是6
C.为了解怀化市6月15日到19日的气温变化情况,应制作折线统计图
D.“打开电视,正在播放怀化新闻节目”是必然事件
5.如图,直线a∥b,∠1=50°,则∠2的度数是( )
A.130° B.50° C.40° D.150°
6.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是( )
A. B. C. D.
7.若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1•x2的值是( )
A.2 B.﹣2 C.4 D.﹣3
8.一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是( )
A. B. C.4 D.8
9.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是( )
A.3cm B.6cm C.10cm D.12cm
10.如图,A,B两点在反比例函数y=的图象上,C,D两点在反比例函数y=的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则k1﹣k2的值是( )
A.6 B.4 C.3 D.2
二、填空题(每题4分,满分24分,将答案填在答题纸上)
11.因式分解:m2﹣m= .
12.计算: = .
13.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AB的中点,OE=5cm,则AD的长是 cm.
14.如图,⊙O的半径为2,点A,B在⊙O上,∠AOB=90°,则阴影部分的面积为 .
15.如图,AC=DC,BC=EC,请你添加一个适当的条件: ,使得△ABC≌△DEC.
16.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为 cm.
三、解答题(本大题共8小题,共86分.解答应写出文字说l明、证明过程或演算步骤.)
17.计算:|﹣1|+0﹣()﹣1﹣3tan30°+.
18.解不等式组,并把它的解集在数轴上表示出来.
19.如图,四边形ABCD是正方形,△EBC是等边三角形.
(1)求证:△ABE≌△DCE;
(2)求∠AED的度数.
20.为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.
(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若学校购买乒乓球拍和羽毛球拍共30幅,且支出不超过1480元,则最多能够购买多少副羽毛球拍?
21.先化简,再求值:(2a﹣1)2﹣2(a+1)(a﹣1)﹣a(a﹣2),其中a=+1.
22.“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动,为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.
(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;
(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.
23.如图,已知BC是⊙O的直径,点D为BC延长线上的一点,点A为圆上一点,且AB=AD,AC=CD.
(1)求证:△ACD∽△BAD;
(2)求证:AD是⊙O的切线.
24.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;
(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;
(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.
2017年湖南省怀化市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.﹣2的倒数是( )
A.2 B.﹣2 C.﹣ D.
【考点】17:倒数.
【分析】根据倒数的定义求解即可.
【解答】解:﹣2得到数是﹣,
故选:C.
2.下列运算正确的是( )
A.3m﹣2m=1 B.(m3)2=m6 C.(﹣2m)3=﹣2m3 D.m2+m2=m4
【考点】47:幂的乘方与积的乘方;35:合并同类项.
【分析】根据合并同类项,幂的乘方与积的乘方等计算法则进行解答.
【解答】解:A、原式=(3﹣2)m=m,故本选项错误;
B、原式=m3×2=m6,故本选项正确;
C、原式=(﹣2)3•m3=﹣8m3,故本选项错误;
D、原式=(1+1)m2=2m2,故本选项错误;
故选:B.
3.为了贯彻习近平总书记提出的“精准扶贫”战略构想,怀化市2016年共扶贫149700人,将149700用科学记数法表示为( )
A.1.497×105 B.14.97×104 C.0.1497×106 D.1.497×106
【考点】1I:科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<
10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将149700用科学记数法表示为1.497×105,
故选:A.
4.下列说法中,正确的是( )
A.要了解某大洋的海水污染质量情况,宜采用全面调查方式
B.如果有一组数据为5,3,6,4,2,那么它的中位数是6
C.为了解怀化市6月15日到19日的气温变化情况,应制作折线统计图
D.“打开电视,正在播放怀化新闻节目”是必然事件
【考点】X1:随机事件;V2:全面调查与抽样调查;VD:折线统计图;W4:中位数.
【分析】根据调查方式,中位数,折线统计图,随机事件,可得答案.
【解答】解:A、要了解某大洋的海水污染质量情况,宜采用抽样调查,故A不符合题意;
B、如果有一组数据为5,3,6,4,2,那么它的中位数是4.5,故B不符合题意;
C、为了解怀化市6月15日到19日的气温变化情况,应制作折线统计图,故C符合题意;
D、“打开电视,正在播放怀化新闻节目”是随机事件,故D不符合题意;
故选:C.
5.如图,直线a∥b,∠1=50°,则∠2的度数是( )
A.130° B.50° C.40° D.150°
【考点】JA:平行线的性质.
【分析】利用平行线的性质得出∠1=∠3=50°,再利用对顶角的定义得出即可.
【解答】解:如图:∵直线a∥直线b,∠1=50°,
∴∠1=∠3=50°,
∴∠2=∠3=50°.
故选:B.
6.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是( )
A. B. C. D.
【考点】T7:解直角三角形;D5:坐标与图形性质.
【分析】作AB⊥x轴于B,如图,先利用勾股定理计算出OA=5,然后在Rt△AOB中利用正弦的定义求解.
【解答】解:作AB⊥x轴于B,如图,
∵点A的坐标为(3,4),
∴OB=3,AB=4,
∴OA==5,
在Rt△AOB中,sinα==.
故选C.
7.若x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1•x2的值是( )
A.2 B.﹣2 C.4 D.﹣3
【考点】AB:根与系数的关系.
【分析】根据根与系数的关系,即可得出x1+x2=2、x1•x2=﹣3,此题得解.
【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣3=0的两个根,
∴x1+x2=2,x1•x2=﹣3.
故选D.
8.一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是( )
A. B. C.4 D.8
【考点】F8:一次函数图象上点的坐标特征.
【分析】首先根据待定系数法求得一次函数的解析式,然后计算出与x轴交点,与y轴交点的坐标,再利用三角形的面积公式计算出面积即可.
【解答】解:∵一次函数y=﹣2x+m的图象经过点P(﹣2,3),
∴3=4+m,
解得m=﹣1,
∴y=﹣2x﹣1,
∵当x=0时,y=﹣1,
∴与y轴交点B(0,﹣1),
∵当y=0时,x=﹣,
∴与x轴交点A(﹣,0),
∴△AOB的面积:×1×=.
故选B.
9.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是( )
A.3cm B.6cm C.10cm D.12cm
【考点】LB:矩形的性质.
【分析】根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.
【解答】解:∵四边形ABCD是矩形,
∴OA=OC=OB=OD=3,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=3,
故选A.
10.如图,A,B两点在反比例函数y=的图象上,C,D两点在反比例函数y=的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则k1﹣k2的值是( )
A.6 B.4 C.3 D.2
【考点】G6:反比例函数图象上点的坐标特征.
【分析】由反比例函数的性质可知S△AOE=S△BOF=k1,S△COE=S△DOF=﹣k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1﹣k2的值.
【解答】解:连接OA、OC、OD、OB,如图:
由反比例函数的性质可知S△AOE=S△BOF=|k1|=k1,S△COE=S△DOF=|k2|=﹣k2,
∵S△AOC=S△AOE+S△COE,
∴AC•OE=×2OE=OE=(k1﹣k2)…①,
∵S△BOD=S△DOF+S△BOF,
∴BD•OF=×(EF﹣OE)=×(3﹣OE)=﹣OE=(k1﹣k2)…②,
由①②两式解得OE=1,
则k1﹣k2=2.
故选D.
二、填空题(每题4分,满分24分,将答案填在答题纸上)
11.因式分解:m2﹣m= m(m﹣1) .
【考点】53:因式分解﹣提公因式法.
【分析】式子的两项含有公因式m,提取公因式即可分解.
【解答】解:m2﹣m=m(m﹣1)
故答案是:m(m﹣1).
12.计算: = x+1 .
【考点】6B:分式的加减法.
【分析】本题考查了分式的加减运算.解决本题主要是因式分解,然后化简.
【解答】解:原式=.故答案为x+1.
13.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AB的中点,OE=5cm,则AD的长是 10 cm.
【考点】L5:平行四边形的性质;KX:三角形中位线定理.
【分析】根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE,继而求出答案.
【解答】解:∵四边形ABCD为平行四边形,
∴BO=DO,
∵点E是AB的中点,
∴OE为△ABD的中位线,
∴AD=2OE,
∵OE=5cm,
∴AD=10cm.
故答案为:10.
14.如图,⊙O的半径为2,点A,B在⊙O上,∠AOB=90°,则阴影部分的面积为 π﹣2 .
【考点】MO:扇形面积的计算.
【分析】根据∠AOB=90°,OA=OB可知△OAB是直角三角形,根据S阴影=S
扇形OAB﹣S△OAB即可得出结论.
【解答】解:∵∠AOB=90°,OA=OB,
∴△OAB是等腰直角三角形.
∵OA=2,
∴S阴影=S扇形OAB﹣S△OAB=﹣×2×2=π﹣2.
故答案为π﹣2.
15.如图,AC=DC,BC=EC,请你添加一个适当的条件: CE=BC ,使得△ABC≌△DEC.
【考点】KB:全等三角形的判定.
【分析】本题要判定△ABC≌△DEC,已知AC=DC,BC=EC,具备了两组边对应相等,利用SSS即可判定两三角形全等了.
【解答】解:添加条件是:CE=BC,
在△ABC与△DEC中,,
∴△ABC≌△DEC.
故答案为:CE=BC.本题答案不唯一.
16.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为 10﹣10 cm.
【考点】L8:菱形的性质;KH:等腰三角形的性质.
【分析】分三种情形讨论①若以边BC为底.②若以边PB为底.③若以边PC为底.分别求出PD的最小值,即可判断.
【解答】解:连接BD,在菱形ABCD中,
∵∠ABC=120°,AB=BC=AD=CD=10,
∴∠A=∠C=60°,
∴△ABD,△BCD都是等边三角形,
①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;
②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP最小,最小值为10﹣10;
③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;
综上所述,PD的最小值为10﹣10(cm);
故答案为:10﹣1.
三、解答题(本大题共8小题,共86分.解答应写出文字说l明、证明过程或演算步骤.)
17.计算:|﹣1|+0﹣()﹣1﹣3tan30°+.
【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.
【分析】﹣1是正数,所以它的绝对值是本身,任何不为0的零次幂都是1,
=4,tan30°=,表示8的立方根,是2,分别代入计算可得结果.
【解答】解:|﹣1|+0﹣()﹣1﹣3tan30°+,
=﹣1+1﹣4﹣3×+2,
=﹣4﹣+2,
=﹣2.
18.解不等式组,并把它的解集在数轴上表示出来.
【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.
【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
【解答】解:解不等式①,得x<3.
解不等式②,得x≥﹣1.
所以,不等式组的解集是﹣1≤x<3.
它的解集在数轴上表示出来为:
19.如图,四边形ABCD是正方形,△EBC是等边三角形.
(1)求证:△ABE≌△DCE;
(2)求∠AED的度数.
【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.
【分析】(1)根据正方形、等边三角形的性质,可以得到AB=BE=CE=CD,∠ABE=∠DCE=30°,由此即可证明;
(2)只要证明∠EAD=∠ADE=15°,即可解决问题;
【解答】(1)证明:∵四边形ABCD是正方形,△ABC是等边三角形,
∴BA=BC=CD=BE=CE,∠ABC=∠BCD=90°,∠EBC=∠ECB=60°,
∴∠ABE=∠ECD=30°,
在△ABE和△DCE中,
,
∴△ABE≌△DCE(SAS).
(2)∵BA=BE,∠ABE=30°,
∴∠BAE==75°,
∵∠BAD=90°,
∴∠EAD=90°﹣75°=15°,同理可得∠ADE=15°,
∴∠AED=180°﹣15°﹣15°=150°.
20.为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.
(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若学校购买乒乓球拍和羽毛球拍共30幅,且支出不超过1480元,则最多能够购买多少副羽毛球拍?
【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.
【分析】
(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由购买2副乒乓球拍和1副羽毛球拍共需116元,购买3副乒乓球拍和2副羽毛球拍共需204元,可得出方程组,解出即可.
(2)设可购买a副羽毛球拍,则购买乒乓球拍(30﹣a)副,根据购买足球和篮球的总费用不超过1480元建立不等式,求出其解即可.
【解答】解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,
由题意得,,
解得:.
答:购买一副乒乓球拍28元,一副羽毛球拍60元.
(2)设可购买a副羽毛球拍,则购买乒乓球拍(30﹣a)副,
由题意得,60a+28(30﹣a)≤1480,
解得:a≤20,
答:这所中学最多可购买20副羽毛球拍.
21.先化简,再求值:(2a﹣1)2﹣2(a+1)(a﹣1)﹣a(a﹣2),其中a=+1.
【考点】4J:整式的混合运算—化简求值.
【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a的值代入计算即可求出值.
【解答】解:原式=4a2﹣4a+1﹣2a2+2﹣a2+2a=a2﹣2a+3,
当a=+1时,原式=3+2﹣2﹣2+3=4.
22.“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动,为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.
(1)用列表或画树状图法,列出甲、乙两队手势可能出现的情况;
(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.
【考点】X7:游戏公平性;X6:列表法与树状图法.
【分析】(1)依据题意用列表法或画树状图法分析所有可能的出现结果;
(2)根据概率公式求出该事件的概率,比较即可.
【解答】解:(1)用列表法得出所有可能的结果如下:
甲
乙
石头
剪子
布
石头
(石头,石头)
(石头,剪子)
(石头,布)
剪子
(剪子,石头)
(剪子,剪子)
(剪子,布)
布
(布,石头)
(布,剪子)
(布,布)
用树状图得出所有可能的结果如下:
(2)裁判员的这种作法对甲、乙双方是公平的.
理由:根据表格得,P(甲获胜)=,P(乙获胜)=.
∵P(甲获胜)=P(乙获胜),
∴裁判员这种作法对甲、乙双方是公平的.
23.如图,已知BC是⊙O的直径,点D为BC延长线上的一点,点A为圆上一点,且AB=AD,AC=CD.
(1)求证:△ACD∽△BAD;
(2)求证:AD是⊙O的切线.
【考点】S9:相似三角形的判定与性质;MD:切线的判定.
【分析】(1)根据等腰三角形的性质得到∠CAD=∠B,由于∠D=∠D,于是得到△ACD∽△BAD;
(2)连接OA,根据的一句熟悉的性质得到∠B=∠OAB,得到∠OAB=∠CAD,由BC是⊙O的直径,得到∠BAC=90°即可得到结论.
【解答】证明:(1)∵AB=AD,
∴∠B=∠D,
∵AC=CD,
∴∠CAD=∠D,
∴∠CAD=∠B,
∵∠D=∠D,
∴△ACD∽△BAD;
(2)连接OA,
∵OA=OB,
∴∠B=∠OAB,
∴∠OAB=∠CAD,
∵BC是⊙O的直径,
∴∠BAC=90°,
∴OA⊥AD,
∴AD是⊙O的切线.
24.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.
(1)求抛物线的函数表达式;
(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;
(3)如图2,CE∥
x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;
(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.
【考点】HF:二次函数综合题.
【分析】(1)根据待定系数法直接抛物线解析式;
(2)分两种情况,利用相似三角形的比例式即可求出点D的坐标;
(3)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出最大值;
(4)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.
【解答】解:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,
∴,
∴,
∴抛物线的表达式为y=x2﹣4x﹣5,
(2)如图1,令x=0,则y=﹣5,
∴C(0,﹣5),
∴OC=OB,
∴∠OBC=∠OCB=45°,
∴AB=6,BC=5,
要使以B,C,D为顶点的三角形与△ABC相似,则有或,
①当时,
CD=AB=6,
∴D(0,1),
②当时,
∴,
∴CD=,
∴D(0,),
即:D的坐标为(0,1)或(0,);
(3)设H(t,t2﹣4t﹣5),
∵CE∥x轴,
∴点E的纵坐标为﹣5,
∵E在抛物线上,
∴x2﹣4x﹣5=﹣5,∴x=0(舍)或x=4,
∴E(4,﹣5),
∴CE=4,
∵B(5,0),C(0,﹣5),
∴直线BC的解析式为y=x﹣5,
∴F(t,t﹣5),
∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,
∵CE∥x轴,HF∥y轴,
∴CE⊥HF,
∴S四边形CHEF=CE•HF=﹣2(t﹣)2+,
当t=时,四边形CHEF的面积最大为.
(4)如图2,∵K为抛物线的顶点,
∴K(2,﹣9),
∴K关于y轴的对称点K'(﹣2,﹣9),
∵M(4,m)在抛物线上,
∴M(4,﹣5),
∴点M关于x轴的对称点M'(4,5),
∴直线K'M'的解析式为y=x﹣,
∴P(,0),Q(0,﹣).
2017年6月30日