- 293.65 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020年湖南省岳阳市中考数学试卷
一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)
1.(3分)(2020•岳阳)﹣2020的相反数是( )
A.﹣2020 B.2020 C.-12020 D.12020
2.(3分)(2020•岳阳)2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为( )
A.0.1109×108 B.11.09×106 C.1.109×108 D.1.109×107
3.(3分)(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是( )
A. B. C. D.
4.(3分)(2020•岳阳)下列运算结果正确的是( )
A.(﹣a)3=a3 B.a9÷a3=a3 C.a+2a=3a D.a•a2=a2
5.(3分)(2020•岳阳)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是( )
A.154° B.144° C.134° D.124°
6.(3分)(2020•岳阳)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是( )
A.36.3,36.5 B.36.5,36.5 C.36.5,36.3 D.36.3,36.7
7.(3分)(2020•岳阳)下列命题是真命题的是( )
A.一个角的补角一定大于这个角
B.平行于同一条直线的两条直线平行
C.等边三角形是中心对称图形
D.旋转改变图形的形状和大小
第22页(共22页)
8.(3分)(2020•岳阳)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是( )
A.0<x1x3<1 B.x1x3>1 C.0<x2x4<1 D.x2x4>1
二、填空题(本大题共8个小题,每小题4分,满分32分)
9.(4分)(2020•岳阳)因式分解:a2﹣9= .
10.(4分)(2020•襄阳)函数y=x-2中自变量x的取值范围是 .
11.(4分)(2020•岳阳)不等式组x+3≥0,x-1<0的解集是 .
12.(4分)(2020•岳阳)如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD= °.
13.(4分)(2020•岳阳)在﹣3,﹣2,1,2,3五个数中随机选取一个数作为二次函数y=ax2+4x﹣2中a的值,则该二次函数图象开口向上的概率是 .
14.(4分)(2020•岳阳)已知x2+2x=﹣1,则代数式5+x(x+2)的值为 .
15.(4分)(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为 .
16.(4分)(2020•岳阳)如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为AM上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是 .(写出所有正确结论的序号)
①PB=PD;②BC的长为43π;③∠DBE=45°;④△BCF∽△PFB;⑤CF•CP为定值.
第22页(共22页)
三、解答题(本大题共8小题,满分64分,解答应写出必要的文字说明、证明过程或演算步骤)
17.(6分)(2020•岳阳)计算:(12)﹣1+2cos60°﹣(4﹣π)0+|-3|.
18.(6分)(2020•岳阳)如图,点E,F在▱ABCD的边BC,AD上,BE=13BC,FD=13AD,连接BF,DE.
求证:四边形BEDF是平行四边形.
19.(8分)(2020•岳阳)如图,一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),B两点.
(1)求反比例函数的表达式;
(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=kx的图象有且只有一个交点,求b的值.
20.(8分)(2020•岳阳)我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:
第22页(共22页)
(1)本次随机调查的学生人数为 人;
(2)补全条形统计图;
(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;
(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.
21.(8分)(2020•岳阳)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.
22.(8分)(2020•岳阳)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,2≈1.41)
23.(10分)(2020•岳阳)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C
第22页(共22页)
点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.
(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;
(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;
(3)如图3,当t>94s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求AFCE的值.
24.(10分)(2020•岳阳)如图1所示,在平面直角坐标系中,抛物线F1:y=a(x-25)2+6415与x轴交于点A(-65,0)和点B,与y轴交于点C.
(1)求抛物线F1的表达式;
(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.
①求点D的坐标;
②判断△BCD的形状,并说明理由;
(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.
第22页(共22页)
第22页(共22页)
2020年湖南省岳阳市中考数学试卷
参考答案与试题解析
一、选择题(本大题共8小题,每小题3分,满分24分,在每道小题给出的四个选项中,选出符合要求的一项)
1.(3分)(2020•岳阳)﹣2020的相反数是( )
A.﹣2020 B.2020 C.-12020 D.12020
【解答】解:﹣2020的相反数是:2020.
故选:B.
2.(3分)(2020•岳阳)2019年以来,我国扶贫攻坚取得关键进展,农村贫困人口减少11090000人,数据11090000用科学记数法表示为( )
A.0.1109×108 B.11.09×106 C.1.109×108 D.1.109×107
【解答】解:11090000=1.109×107,
故选:D.
3.(3分)(2020•岳阳)如图,由4个相同正方体组成的几何体,它的左视图是( )
A. B. C. D.
【解答】解:从该几何体的左侧看到的是一列两层,因此选项A的图形符合题意,
故选:A.
4.(3分)(2020•岳阳)下列运算结果正确的是( )
A.(﹣a)3=a3 B.a9÷a3=a3 C.a+2a=3a D.a•a2=a2
【解答】解:(﹣a)3=﹣a3,因此选项A不符合题意;
a9÷a3=a9﹣3=a6,因此选项B不符合题意;
a+2a=(1+2)a=3a,因此选项C符合题意;
a•a2=a1+2=a3,因此选项D不符合题意;
故选:C.
5.(3分)(2020•岳阳)如图,DA⊥AB,CD⊥DA,∠B=56°,则∠C的度数是( )
第22页(共22页)
A.154° B.144° C.134° D.124°
【解答】解:∵DA⊥AB,CD⊥DA,
∴∠A=∠D=90°,
∴∠A+∠D=180°,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B=56°,
∴∠C=180°﹣∠B=124°,
故选:D.
6.(3分)(2020•岳阳)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是( )
A.36.3,36.5 B.36.5,36.5 C.36.5,36.3 D.36.3,36.7
【解答】解:将这组数据重新排列为36.3,36.3,36.5,36.5,36.5,36.7,36.8,
所以这组数据的众数为36.5,中位数为36.5,
故选:B.
7.(3分)(2020•岳阳)下列命题是真命题的是( )
A.一个角的补角一定大于这个角
B.平行于同一条直线的两条直线平行
C.等边三角形是中心对称图形
D.旋转改变图形的形状和大小
【解答】解:A、一个角的补角不一定大于这个角,如直角的补角等于它,原命题是假命题;
B、平行于同一条直线的两条直线平行,是真命题;
C、等边三角形不是中心对称图形,原命题是假命题;
D、旋转不改变图形的形状和大小,原命题是假命题;
故选:B.
第22页(共22页)
8.(3分)(2020•岳阳)对于一个函数,自变量x取c时,函数值y等于0,则称c为这个函数的零点.若关于x的二次函数y=﹣x2﹣10x+m(m≠0)有两个不相等的零点x1,x2(x1<x2),关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),则下列关系式一定正确的是( )
A.0<x1x3<1 B.x1x3>1 C.0<x2x4<1 D.x2x4>1
【解答】解:由题意关于x的方程x2+10x﹣m﹣2=0有两个不相等的非零实数根x3,x4(x3<x4),就是关于x的二次函数y=﹣x2﹣10x+m(m≠0)与直线y=﹣2的交点的横坐标,
画出函数的图象草图如下:
∵抛物线的对称轴为直线x=--102×(-1)=-5,
∴x3<x1<﹣5,
由图象可知:0<x1x3<1一定成立,
故选:A.
二、填空题(本大题共8个小题,每小题4分,满分32分)
9.(4分)(2020•岳阳)因式分解:a2﹣9= (a+3)(a﹣3) .
【解答】解:a2﹣9=(a+3)(a﹣3).
10.(4分)(2020•襄阳)函数y=x-2中自变量x的取值范围是 x≥2 .
【解答】解:依题意,得x﹣2≥0,
解得:x≥2,
故答案为:x≥2.
11.(4分)(2020•岳阳)不等式组x+3≥0,x-1<0的解集是 ﹣3≤x<1 .
【解答】解:解不等式x+3≥0,得:x≥﹣3,
第22页(共22页)
解不等式x﹣1<0,得:x<1,
则不等式组的解集为﹣3≤x<11,
故答案为:﹣3≤x<1.
12.(4分)(2020•岳阳)如图,在Rt△ABC中,CD是斜边AB上的中线,∠A=20°,则∠BCD= 70 °.
【解答】解:在Rt△ABC中,∠A=20°,则∠B=70°,
∵∠ACB=90°,CD是斜边AB上的中线,
∴BD=CD=AD,
∴∠BCD=∠B=70°,
故答案为70.
13.(4分)(2020•岳阳)在﹣3,﹣2,1,2,3五个数中随机选取一个数作为二次函数y=ax2+4x﹣2中a的值,则该二次函数图象开口向上的概率是 35 .
【解答】解:∵从﹣3,﹣2,1,2,3五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1、2、3这3种结果,
∴该二次函数图象开口向上的概率是35,
故答案为:35.
14.(4分)(2020•岳阳)已知x2+2x=﹣1,则代数式5+x(x+2)的值为 4 .
【解答】解:∵x2+2x=﹣1,
∴5+x(x+2)=5+x2+2x=5﹣1=4.
故答案为:4.
15.(4分)(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为 x+y=250x+10y=30 .
第22页(共22页)
【解答】解:依题意,得:x+y=250x+10y=30.
故答案为:x+y=250x+10y=30.
16.(4分)(2020•岳阳)如图,AB为半圆O的直径,M,C是半圆上的三等分点,AB=8,BD与半圆O相切于点B.点P为AM上一动点(不与点A,M重合),直线PC交BD于点D,BE⊥OC于点E,延长BE交PC于点F,则下列结论正确的是 ②⑤ .(写出所有正确结论的序号)
①PB=PD;②BC的长为43π;③∠DBE=45°;④△BCF∽△PFB;⑤CF•CP为定值.
【解答】解:①连接AC,并延长AC,与BD的延长线交于点H,如图1,
∵M,C是半圆上的三等分点,
∴∠BAH=30°,
∵BD与半圆O相切于点B.
∴∠ABD=90°,
∴∠H=60°,
∵∠ACP=∠ABP,∠ACP=∠DCH,
∴∠PDB=∠H+∠DCH=∠ABP+60°,
∵∠PBD=90°﹣∠ABP,
若∠PDB=∠PBD,则∠ABP+60°=90°﹣∠ABP,
∴∠ABP=15°,
∴P点为AM的中点,这与P为AM上的一动点不完全吻合,
∴∠PDB不一定等于∠ABD,
∴PB不一定等于PD,
故①错误;
②∵M,C是半圆上的三等分点,
∴∠BOC=13×180°=60°,
第22页(共22页)
∵直径AB=8,
∴OB=OC=4,
∴BC的长度=60π×4180=43π,
故②正确;
③∵∠BOC=60°,OB=OC,
∴∠ABC=60°,OB=OC=BC,
∵BE⊥OC,
∴∠OBE=∠CBE=30°,
∵∠ABD=90°,
∴∠DBE=60°,
故③错误;
④∵M、N是AB的三等分点,
∴∠BPC=30°,
∵∠CBF=30°,
但∠BFP=∠FCB,
∠PBF<∠BFC,
∴△BCF∽△PFB不成立,
故④错误;
⑤∵△BCF∽△PCB,
∴CBCP=CFCB,
∴CF•CP=CB2,
∵CB=OB=OC=12AB=4,
∴CF•CP=16,
故⑤正确.
第22页(共22页)
故答案为:②⑤.
三、解答题(本大题共8小题,满分64分,解答应写出必要的文字说明、证明过程或演算步骤)
17.(6分)(2020•岳阳)计算:(12)﹣1+2cos60°﹣(4﹣π)0+|-3|.
【解答】解:原式=2+2×12-1+3
=2+1﹣1+3
=2+3.
18.(6分)(2020•岳阳)如图,点E,F在▱ABCD的边BC,AD上,BE=13BC,FD=13AD,连接BF,DE.
求证:四边形BEDF是平行四边形.
【解答】解:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵BE=13BC,FD=13AD,
∴BE=DF,
∵DF∥BE,
∴四边形BEDF是平行四边形.
19.(8分)(2020•岳阳)如图,一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),B两点.
(1)求反比例函数的表达式;
(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=kx的图象有且只有一个交点,求b的值.
第22页(共22页)
【解答】解:(1)∵一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),
∴m=4,
∴k=﹣1×4=﹣4,
∴反比例函数解析式为:y=-4x;
(2)∵一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),
∴y=x+5﹣b,
∵平移后的图象与反比例函数y=kx的图象有且只有一个交点,
∴x+5﹣b=-4x,
∴x2+(5﹣b)x+4=0,
∵△=(5﹣b)2﹣16=0,
解得b=9或1,
答:b的值为9或1.
20.(8分)(2020•岳阳)我市某学校落实立德树人根本任务,构建“五育并举”教育体系,开设了“厨艺、园艺、电工、木工、编织”五大类劳动课程.为了解七年级学生对每类课程的选择情况,随机抽取了七年级若干名学生进行调查(每人只选一类最喜欢的课程),将调查结果绘制成如图两幅不完整的统计图:
第22页(共22页)
(1)本次随机调查的学生人数为 60 人;
(2)补全条形统计图;
(3)若该校七年级共有800名学生,请估计该校七年级学生选择“厨艺”劳动课程的人数;
(4)七(1)班计划在“园艺、电工、木工、编织”四大类劳动课程中任选两类参加学校期末展示活动,请用列表或画树状图的方法,求恰好选中“园艺、编织”这两类劳动课程的概率.
【解答】解:(1)18÷30%=60(人),
故答案为:60;
(2)60﹣15﹣18﹣9﹣6=12(人),补全条形统计图如图所示:
(3)800×1560=200(人),
答:该校七年级800名学生中选择“厨艺”劳动课程的有200人;
(4)用列表法表示所有可能出现的结果如下:
共有12种可能出现的结果,其中选中“园艺、编织”的有2种,
∴P(园艺、编织)=212=16.
21.(8分)(2020•岳阳)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.
第22页(共22页)
【解答】解:设B型机器人每小时搬运xkg原料,则A型机器人每小时搬运(x+20)kg原料,
依题意,得:1200x+20=1000x,
解得:x=100,
经检验,x=100是原方程的解,且符合题意,
∴x+20=120.
答:A型机器人每小时搬运120kg原料,B型机器人每小时搬运100kg原料.
22.(8分)(2020•岳阳)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,2≈1.41)
【解答】解:如图,过点C作CD⊥AB于点D,
根据题意可知:
AB=7,∠ACD=45°,∠CBD=90°﹣68°=22°,
∴AD=CD,
∴BD=AB﹣AD=7﹣CD,
第22页(共22页)
在Rt△BCD中,
∵tan∠CBD=CDBD,
∴CD7-CD≈0.40,
∴CD=2,
∴AD=CD=2,
BD=7﹣2=5,
∴AC=22≈2.83,
BC=CDsin22°≈20.37≈5.41,
∴AC+BC≈2.83+5.41≈8.2(km).
答:新建管道的总长度约为8.2km.
23.(10分)(2020•岳阳)如图1,在矩形ABCD中,AB=6,BC=8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿C→A,A→B的方向运动,当点Q运动到点B时,P,Q两点同时停止运动.设点P运动的时间为t(s),连接PQ,过点P作PE⊥PQ,PE与边BC相交于点E,连接QE.
(1)如图2,当t=5s时,延长EP交边AD于点F.求证:AF=CE;
(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;
(3)如图3,当t>94s时,延长EP交边AD于点F,连接FQ,若FQ平分∠AFP,求AFCE的值.
【解答】解:(1)∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,
在Rt△ABC中,AB=6,BC=8,根据勾股定理得,AC=10,
由运动知,CP=t=5,
∴AP=AC﹣CP=5,
第22页(共22页)
∴AP=CP,
∵AD∥BC,
∴∠PAF=∠PCE,∠AFP=∠CEP,
∴△APF≌△CPE(AAS),
∴AF=CE;
(2)结论:AQ2+CE2=QE2,
理由:如图2,
连接FQ,由(1)知,△APF≌△CPE,
∴AF=CE,PE=PF,
∵EF⊥PQ,
∴QE=QF,
在Rt△QAF中,根据勾股定理得,AQ2+AF2=QF2,
∴AQ2+CE2=QE2;
(3)如图3,
由运动知,AQ=t,CP=t,
∴AP=AC﹣CP=10﹣t,
∵FQ平分∠AFE,
∴∠AFC=∠PFQ,
∵∠FAQ=∠FPQ=90°,FQ=FQ,
∴△FAQ≌△FPQ(AAS),
∴AQ=PQ=t,AF=PF,
∴BQ=AB﹣AQ=6﹣t,∠FAC=∠FPA,
∵∠DAC=∠ACB,∠APF=∠CPE,
∴∠ACB=∠CPE,
∴PE=CE,过点E作EN⊥AC于N,
∴CN=12CP=12t,∠CNE=90°=∠ABC,
∵∠NCE=∠BCA,
第22页(共22页)
∴△CNE∽△CBA,
∴CEAC=CNCB,
∴CE10=12t8,
∴CE=58t,
∴PE=58t,BE=BC﹣CE=8-58t,
在Rt△QPE中,QE2=PQ2+PE2,
在Rt△BQE中,QE2=BQ2+BE2,
∴PQ2+PE2=BQ2+BE2,
∴t2+(58t)2=(6﹣t)2+(8-58t)2,
∴t=5011,
∴CP=t=5011,
∴AP=10﹣CP=6011,
∵AD∥BC,
∴△APF∽△CPE,
∴AFCE=APCP=60115011=65.
第22页(共22页)
24.(10分)(2020•岳阳)如图1所示,在平面直角坐标系中,抛物线F1:y=a(x-25)2+6415与x轴交于点A(-65,0)和点B,与y轴交于点C.
(1)求抛物线F1的表达式;
(2)如图2,将抛物线F1先向左平移1个单位,再向下平移3个单位,得到抛物线F2,若抛物线F1与抛物线F2相交于点D,连接BD,CD,BC.
①求点D的坐标;
②判断△BCD的形状,并说明理由;
(3)在(2)的条件下,抛物线F2上是否存在点P,使得△BDP为等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由.
【解答】解:(1)把点A(-65,0)代入抛物线F1:y=a(x-25)2+6415中得:
0=a(-65-25)2+6415,
解得:a=-53,
∴抛物线F1:y=-53(x-25)2+6415;
(2)①由平移得:抛物线F2:y=-53(x-25+1)2+6415-3,
∴y=-53(x+35)2+1915,
∴53(x+35)2+1915=-53(x-25)2+6415,
-103x=103,
解得:x=﹣1,
第22页(共22页)
∴D(﹣1,1);
②当x=0时,y=-53×425+6415=4,
∴C(0,4),
当y=0时,-53(x-25)2+6415=0,
解得:x=-65或2,
∴B(2,0),
∵D(﹣1,1),
∴BD2=(2+1)2+(1﹣0)2=10,
CD2=(0+1)2+(4﹣1)2=10,
BC2=22+42=20,
∴BD2+CD2=BC2且BD=CD,
∴△BDC是等腰直角三角形;
(3)存在,
设P[m,-53(m+35)2+1915],
∵B(2,0),D(﹣1,1),
∴BD2=(2+1)2+12=10,PB2=(m-2)2+[-53(m+35)2+1915]2,PD2=(m+1)2+[-53(m+35)2+1915-1]2,
分三种情况:
①当∠DBP=90°时,BD2+PB2=PD2,
即10+(m﹣2)2+[-53(m+35)2+1915]2=(m+1)2+[-53(m+35)2+1915-1]2,
解得:m=﹣4或1,
当m=﹣4时,BD=10,PB=36+324=610,即△BDP不是等腰直角三角形,不符合题意,
当m=1时,BD=10,PB=1+9=10,
∴BD=PB,即△BDP是等腰直角三角形,符合题意,
∴P(1,﹣3);
②当∠BDP=90°时,BD2+PD2=PB2,
第22页(共22页)
即10+[-53(m+35)2+1915-1]2=(m﹣2)2+[-53(m+35)2+1915]2,
解得:m=﹣1(舍)或﹣2,
当m=﹣2时,BD=10,PD=1+9=10,
∴BD=PD,即此时△BDP为等腰直角三角形,
∴P(﹣2,﹣2);
③当∠BPD=90°时,且BP=DP,有BD2=PD2+PB2,如图3,
当△BDP为等腰直角三角形时,点P1和P2不在抛物线上,此种情况不存在这样的点P;
综上,点P的坐标(1,﹣3)或(﹣2,﹣2).
第22页(共22页)