- 1.37 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学:四边形试题
一、选择题
1.下列命题,真命题是 ( )
A. 两条直线被第三条直线所截,同位角相等
B. 两组对角分别相等的四边形是平行四边形
C. 在同一个圆中,相等的弦所对的弧相等
D. 对角线相等的四边形是矩形
2.如图2,M是ABCD的AB边中点,CM交BD于点E, 则图中阴影部分的面积ABCD的面积的比是 ( )
A. 1:3 B.1:4
C. 1:6 D.5:12
(第3题图)
1
3.把矩形ABCD沿EF对折后使两部分叠合,如图所示.若,则∠1= ( )
A.50° B.55° C.60° D.65°
4.如图,直角梯形ABCD中,AB⊥CD,AE∥CD交BC于E,O是AC的中点,,,,下列结论:①∠CAE=30°;②四边形ADCE是菱形;③;④OB⊥CD.其中正确的结论是( )
A.①②④ B. ②③④ C.①③④ D.①②③④
A
B
E
O
D
C
第4题图
5.已知如图,在ABCD中,E、F分别为边AB、CD的中点BD是对角线,AG∥DB,交CB的延长线于G,连接GF,若AD⊥BD.下列结论:①DE∥BF;②四边形BEDF是菱形;③FG⊥AB;④S△BFG= 其中正确的是( )
A. ①②③④ B. ①② C. ①③ D. ①②④
6.如图,ABCD、CEFG是正方形,E在CD上,直线BE、DG交于H,且HE·HB=,BD、AF交于M,当E在线段CD(不与C、D重合)上运动时,下列四个结论:① BE⊥GD;② AF、GD所夹的锐角为45°;③ GD=;④ 若BE平分∠DBC,则正方形ABCD的面积为4.其中正确的结论个数有( )
A. 1个B. 2个C. 3个D. 4个
7.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于( )
A.50° B.55° C.60° D.65°
8.把长为8cm,宽为2cm的矩形按虚线对折,按图中的斜线剪出一个直角梯形,展开得到一个等腰梯形,剪掉部分的面积为6cm2,则打开后梯形的周长是( )
A.cm B.cm C.22cm D.18cm
9.一幅美丽的图案,在某个顶点处由三个边长相等的正多边形密铺而成,其中有两个正八边形,那么另一个是( )
A 正三角形 B 正四边形 C 正五边形 D 正六边形
10.如图将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=600,则∠CFD=( )
A、200 B、300 C、400 D、500
11.下列命题中真命题是 ( )
A.有一组邻边相等的四边形是菱形; B.四条边都相等的四边形是菱形;
C.对角线互相垂直的四边形是菱形; D.对角线互相平分且相等的四边形是菱形.
12.边长为2的正六边形的边心距为 ( )
A.1; B.2; C.; D.2.
13.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF= ( )
A.110° B.115° C.120° D.130°
14.两条对角线互相垂直平分的四边形是 ( ).
A.等腰梯形; B.菱形; C.矩形; D.平行四边形.
16.下列命题中,真命题是 ( )
A.对角线互相平分且相等的四边形是矩形
B.对角线互相垂直且相等的四边形是矩形
C.对角线互相平分且相等的四边形是菱形
D.对角线互相垂直且相等的四边形是菱形
17.如图,已知正方形ADBF,点E在AD上,且∠AEB=,EC//DF交BD的延长线于C,N为BE延长线上一点,BN交AC于M,且CE=2MN,连结AN、CN,下列结论:①AC⊥BN; ②△NCE为等边三角形;③BF=2AM;④BE+DE=DF,其中正确的有:( )
A、①②③ B、①②④ C、①③④ D、②③④
18.如图,正方形ABCD,以D为圆心,DC为半径画弧与以BC为直径的⊙O交于点P,⊙O交AC于E,CP交AB于M,延长AP交⊙O于N,下列结论:①AE=EC;②PC=PN;
③EP⊥PN;④ON//AB。其中正确的是 ( )
A、①②③④ B、①②③ C、①②④ D、①③④
19.如图,已知菱形ABCD的边长为2㎝,,点M从点A出发,以1㎝/s的速度向点B运动,点N从点A 同时出发,以2㎝/s的速度经过点D向点C运动,当其中一个动点到达端点时,另一个动点也随之停止运动. 则△AMN的面积(㎝2) 与点M运动的时间(s)的函数的图像大致是( )
M
N
·
A
B
C
D
·
O
1
2
O
2
O
1
2
A
B
C
D
O
1
2
20. 如图,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得截下的矩形(图中阴影部分)与原矩形相似,则截下矩形的面积是( )
A. 2 cm2 B. 4 cm2 C. 8 cm2 D. 16 cm2
21.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上,若点A的坐标为 (-2,-2),则k的值为
( )
A
B
C
D
O
x
y
A.4 B.-4
C.8 D.—8
22.
如图,直角梯形ABCD中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EM⊥AB于M,EN⊥AD于N.设BM=x,矩形AMEN的面积为y,那么y与x之间的函数关系的图象大致是( )
22.如图,四边形ABCD为矩形纸片,将纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若CD=6,则AF=( )
A:4 B:3
C:4 D:8
23.如图,正方形ABCD的三边中点E、F、G。连ED交AF于M,
GC交DE于N,下列结论 ①GM⊥CM ②CD=CM
③四边形MFCG为等腰梯形。 ④∠CMD=∠AGM
其中正确的有( )
A ①②③ B ①②④ C ①③④ D ①②③④
24.下列命题中假命题的是( )
A.平行四边形对角线互相平分; B.对角线互相平分的四边形是平行四边形; C.矩形的对角线相等; D.对角线相等的四边形是矩形;
25.如图,已知平行四边形ABCD中,,
于,于,相
交于,的延长线相交于,下面结论:
①②③
④.其中正确的结论是( )
A.①②③④ B.①②③
C.①②④ D.②③④
26.(武汉中考命题)如图,直线BD是四边形ABCD的对称轴,已知∠BAD=120°,∠CDB=25°,则∠ABC的度数为( )
A、70° B、60° C、50° D、80°
27.如图,Rt△ABC和Rt△CDE中,∠A=30°,
∠E=45°,AB=CE,∠BCD=30°,FG⊥AB,下列结论:
①CH=FH;②BC=GC;③四边形BDEF为平行四边形;
④FH=GF+BH.其中正确的结论是( )
A.①②③ B.①②④ C.①③④ D.②③④
28.将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,
这个新的图形可以是下列图形中的( )。
A. 三角形 B. 平行四边形 C. 矩形 D. 正方形
二、填空题
2. 如图,在等腰梯形中,A
B
C
D
E
且于 ,,,则该梯形的面积为 .
3.在梯形ABCD中,AD // BC,E、F分别是两腰AB、CD的中点,如果AD = 4,EF = 6,那么BC =____.
4.梯形ABCD中,AD∥BC,如果∠A=5∠B,那么∠B= 度.
5.在四边形ABCD中,如果AB∥CD,AB=BC,要使四边形ABCD是菱形,还需添加一个条件,这个条件可以是 .
6.已知梯形的上底长为a,中位线长为m,那么这个梯形的下底长为 .
7.如图,□ABCD中,∠B=60°,AB=4,BC=5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是
9.如图,正方形ABCD的对角线AC、BD相交于点O,∠CAB的平分线交BD于点E,交BC于点F. 若OE=1,则CF=__________.
A
B
E
C
D
F
10.如图模1-6,E为平行四边形ABCD的边BC延长线上一点,连结AE,交边CD于点F.在不添加辅助线的情况下,请写出一对相似三角形: .
11.一个正方形的面积是9a2–6a+1(a>1),则该正方形的边长是 .
三、解答题
1.如图所示,在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF。
(1)、AE和AF有何数量关系?证明你的结论.
(2)、过点C作CG∥EA交AF于点H,交AD于点G,若∠BAE=25°,
∠BCD=130°,求∠AHC的度数.
2.一次数学兴趣活动,小明提出这样三个问题,请你解决:
(1)把正方形ABCD与等腰Rt△PAQ如图(a)所示重叠在一起,其中∠PAQ=90°,
点Q 在边BC上,连接PD,求证:△ADP≌△ABQ.
(2)如图(b),O为正方形ABCD对角线的交点,将一直角三角板FPQ的直角顶点F与点O重合,转动三角板使两直角边始终与BC、AB相交于点M、N,求证:OM=ON.
(3)如图(c),将(2)的“正方形”改为“矩形”,其它条件不变,如果AB=4,AD=6,FM=x,FN=y,试求y与x之间的关系式.
图(a)
(第2题图)
(图b)
(图c)
3.如图正方形ABCD中,E是边BC上一动点,BC=nBE,DO⊥AE于点O,CO的延长线交AB于点F。
(1)当n=2时,DO= AO;OE= AO。
(2)当n=3时,求证。
(3)当n= 时,F是AB的5等分点。
(1) (2)
4.如图,在四边形中,点是线段上的任意一点(与不重合),分别是的中点.
(1)证明四边形是平行四边形;
(2)在(1)的条件下,若,且,证明平行四边形是正方形.
B
G
A
E
F
H
D
C
5.在等腰梯形ABCD中,AD∥BC,E、F是边BC上的两点,且BE=FC,DE与AF相交于梯形ABCD内一点O.
(1) 求证:OE=OF;
(2) 当EF=AD时,联结AE、DF,先判断四边形AEFD是怎样的四边形,再证明你的结论.
6.在□ABCD中,BC=2AB,M为AD的中点,设∠ABC=α
过点C作直线AB的垂线,垂足为点E,连ME。
(1)如图①,当α=900,ME与MC的数量关系是 ;∠AEM与∠DME的关系是 。
(2)如图②,当600<α<900时,请问:(1)中的两个结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
(3)如图③,当00<α<600时,请在图中画出图形,ME与MC的数量关系是 ;∠AEM与∠DME的关系是 。(直接写出结论即可,不必证明)
图① 图② 图③
((第7题图)
A
B
D
C
G
O
E
F
7.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD、CF平分∠GCD, EF∥BC交CD于点O .
(1)求证:OE=OF;
(2)若点O为CD的中点,求证:四边形DECF是矩形.
8.如图,在△ABC中,D是BC边上的一点,E是AD的
中点,过A点作BC的平行线交CE的延长线于点F,且
AF=BD,连结BF.
A
F
E
B
D
C
⑴求证:BD=CD;
⑵如果AB=AC,试判断四边形AFBD的形状,
并证明你的结论.
9.已知:如图,在平行四边形ABCD中,AM=DM.
求证:(1)AE=AB;A
B
C
D
E
M
(第9题图)
(2)如果BM平分∠ABC,求证:BM⊥CE.
10.如图,在平行四边形ABCD中,点G是BC延长线上
一点,AG与BD交于点E,与DC交于点F,
如果AB=m,CG=BC,
求:(1)DF的长度;
(2)三角形ABE与三角形FDE的面积之比.
11.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角平分线,BE⊥AE.
(1)求证:DA⊥AE.
(2)试判断AB与DE是否相等?并证明你的结论.
12.如图,已知正方形ABCD,F为DC边上一动点,DC=nDF,AE⊥AF交CB的延长线于E,连结EF交AB于G。
(1)若n=2,则 ,
(2)若n=3,求证AG=5GB
(3)当n= 时,AG为GB的6倍(直接写结果,不要求证明)
13. A
B
C
D
E
F
G
已知:如图,在菱形ABCD中,点E在对角线AC上,点F在BC的延长线上,EF=EB,EF与CD相交于点G.
(1) 求证:;
(2) 联结DF,如果EF⊥CD,那么∠FDC与∠ADC之间有怎样的数量关系?证明你所得到的结论.
13.已知:如图,梯形ABCD中,AB//DC,E是BC的中点,AE、DC的延长线相交于点F,连接AC、BF.
(1)求证:AB=CF;
(2)若将梯形沿对角线AC折叠恰好D点与E点重合,梯形ABCD应满足什么条件,能使四边形ABFC为菱形?并加以证明.
(3)在(2)的条件下求Sin∠CAF的值.
14.如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.(1)求证:EB=EF;(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.
A
B
C
D
F
E
G
15.两个长为2cm,宽为1cm的长方形,摆放在直线上(如图①),=2cm,将长方形绕着点顺时针旋转角,将长方形绕着点逆时针旋转相同的角度.
(1)当旋转到顶点、重合时,连接(如图②),求点到的距离;
(2)当时(如图③),求证:四边形为正方形.
16.如图,四边形ABCD中,AD∥BC,对角线AC,BD交于点O,且OA=OC,求证四边形ABCD是平行四边形。
17.如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM 于E,CF⊥DM于F.求证:AE2+CF2=AD2
18.已知:如图模1-13,在□ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
⑴求证:BE=DG;
A
D
G
C
B
F
E
⑵若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.
19.如图,在平行四边形ABCD中,
F
E
D
C
B
A
∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,
试判断AF与CE是否相等,并说明理由.
正方形中度题专题
例1 已知:O是正方形ABCD对角线的交点,AE为∠BAC的平分线,交BC于E,
DH⊥AE于H,交AB于F,交AO于G.求证:BF=2OG
练习
在正方形ABCD中,,
∠1=∠2.求证:AE=FE
变式思考:如果点E为BC上任意一点,结论AE=EF仍然成立吗?
例2 如图1,矩形纸片ABCD中,AB=3厘米,BC=4厘米.现将A,C重合,使纸片折叠压平,设折痕为EF.试确定重叠部分△AEF的面积.
例3 在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,求DP的长
例4 △ABC是等腰直角三角形,∠ACB=90°,M,N为斜边AB上两点,如果
∠MCN=45°.求证 AM2+BN2=MN2
例5 △ABC是等腰直角三角形,∠ACB=90°, M,N为斜边AB上两点,满足AM2+BN2=MN2.求∠MCN的度数.
例6 在△ABC的外面作正方形ABEF和ACGH,M点
例7 在正方形ABCD中,∠1=∠2.
求证:AE=BF+DE .
例8 正方形ABCD的边长为1,E、F分别在BC和CD上,,
求
例9 点O为正方形ABCD内一点,
如果OA:OB:OC=1:2:3,求∠AOB的度数
例10 在正方形ABCD中,∠1=∠2.
求证:
提示:注意到基本图形中的AE=AF.
1, 两次应用内角平分线定理和CE=CF可证
2, 过点O作OG‖DE和CO=CG,CF=CE可证.
3, 过点O作OH‖BE, OF= OH=
例11在正方形ABCD中,∠1=∠2.AE⊥DF,
求证:
(提示:一条线段的一半或2倍这两者的位置关系有哪两种)
例12 在正方形ABCD中,点E、F分别为BC和AB的中点 求证:AM=AD
例13 正方形ABCD中,点E为AD的中点,BD和CE相交于点F, 求证:AF⊥BE
例14 如图13,点E为正方形ABCD对角线BD上一点, EF⊥BC, EG⊥CD
A
D
求证:AE⊥FG
B
C
F
13
E
G
(提示:延长AE交GF于点M,DC,使CH=DG,连接HF,
证四边形对角互补,法2:延长FE,AE证全等三角形)
例15如图,等腰直角△ABC中,AC=BC, 点E在BC上,以AE为边长作正方形AEMN,EM交AB于F, 连BM. 求证:BM⊥AB
C
例16 点E为正方形ABCD的边BC上一点, MN⊥DE
分别交AB、CD于点M、N. 求证:MN=DE
例17 正方形ABCD中, DAF=250,AF交BD于点E.
求BEC的度数.
例18正方形ABCD的边长为1cm, △ BCE是等边三角形
求△ BCE的面积 。
例19以正方形ABCD 的CD边长作等边△DCE,AC和BE相交于点F,连接DF.
(1) 求AFD的度数;
(2) 求证:AF=EF.
提示:B CE=1500,CBE=CEB=FDC=150,
△A BF全等△ ADF
例20已知:点E、F分别正方形ABCD中AB和BC的中点,连接AF和DE相交于点G,
GH⊥AD于点H.
(1) 求证:AF⊥DE ;
(2) 如果AB=2,求GH的长;
(3) 求证:CG=CD (作CM⊥DG,证DM=AG=0.5DG)
例21 如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM
A
M
F
D
E
N
B
C
例22 如图,在正方形ABCD中,取AD、CD边的中点E、F,连接CE、BF交于点G,连接AG。试判断AG与AB是否相等,并说明道理。
例23 已知Q是正方形ABCD中CD边上一点,P是BC边上一点;
(1) 若∠DAQ=∠PAQ,求证:AP=BP+QD;
(2) 若AP=BP+QD,则∠DAQ=∠PAQ成立吗?为什么?
A
B
C
D
Q
P
例24 如图,正方形ABCD中对角线AC、BD相交于O,E为AC上一点,AG⊥EB交EB于G,AG交BD于F。
(1) 说明OE=OF的道理;
在(1)中,若E为AC延长线上,AG⊥EB交EB的延长线于G,AG、BD的延长线交于F,其他条件不变,如图2,则结论:“OE=OF”还成立吗?请说明理由。
例25已知:正方形中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点.
当绕点旋转到时(如图1),易证.
(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明.
(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想.
答案
一、选择题
1. BAADD DAABB BCBBA ABDAC DAADB ABB
二、填空题
2. 25 3. 8 4. 30;5. AB=CD等;6. ;7.
9.2 10.△AFD∽△EFC(或△EFC∽△EAB,或△EAB∽△AFD)
11. 3a–1;
三、解答题
答案 (1)AE=AF
(2) 100°
2. 答案 (1)由SAS证△ADP≌△ABQ.
(2)由同角的余角相等得∠AON=∠BOM,证△OAN≌△OBM(ASA),
得OM=ON.
(3)过F作FE⊥AB,FH⊥BC,证△FEN∽△FHM,
得.
3. 答:(1)2 ,
(2)证明:AB=3a,BE=a ,易证,
,
,,
,
(3)
4.答案:证明:(1)在中,分别是的中点
且
又是的中点,,
且
四边形是平行四边形
(2)证明:分别是的中点
且
又,且,,且
平行四边形是正方形
5.答案:(1)∵四边形ABCD是等腰梯形,
∵BE=FC,
∴BF=EC
∴△ABF≌△DCE
∴
∴OE=OF
(2)四边形AEFD是矩形
∵EF=AD且 EF∥AD,
∴四边形AEFD是平行四边形
由(1)有△ABF≌△DCE
∴AF=DE
∴四边形AEFD是矩形。
6. 答案:、(1)ME=MC ; ∠AEM+∠DME=180°或∠DME-∠AEM=180°-α
(2)成立。连CM,过M作PQ⊥EA于P,PQ⊥CD于Q ∴四边形PQCE为矩形
∴CQ=EP ∵M为中点,易证△PAM≌△QDM ∴PM=QM
∴△EPM≌CQM ∴EM=CM
取BC中点N,连NM并延长到G, ∴∠ABC=∠GMD=2 MN∥AB
∴∠AEM=∠NME ∴∠DME-∠AEM=∠DME-∠EMN=∠DMN=180°-α
∴∠DME-∠AEM=180°-α
(3)EM=MC ∠DME-∠AEM=α
7. (1)证明:∵CE平分∠BCD、CF平分∠GCD
∴
∵EF∥BC,∴
∴
∴OE=OC,OF=OC,∴OE=OF
(2)∵点O为CD的中点,∴OD=OC,又OE=OF
∴四边形DECF是平行四边形
∵CE平分∠BCD、CF平分∠GCD
∴
∴
即,∴四边形DECF是矩形
8.
8答案:证明:⑴∵AF∥BC,∴∠AFE=∠DCE.
∵E是AD的中点,∴AE=DE.
∵ ∴△AEF≌△DEC.
∴AF=DC,∵AF=BD,∴BD=CD.
⑵四边形AFBD是矩形
∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°.
∵AF=BD,AF∥BC,∴四边形AFBD是平行四边形.
又∠ADB=90°,∴四边形AFBD是矩形.
9. 答案:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.
∴∠E=∠ECD.
又∵AM=DM,∠AME=∠DMC,∴△AEM≌△DCM.
∴CD=AE. ∴AE=AB.
(2)∵四边形ABCD是平行四边形,∴AD∥BC.
∴∠AMB=∠MBC.
∵BM平分∠ABC,∴∠ABM=∠MBC.
∴∠ABM=∠AMB.∴AB=AM.
∵AB=AE,∴AM=AE.
∴∠E=∠AME.
∵∠E+∠EBM+∠BMA+∠AME=180°,
∴∠BME=90°,即BM⊥CE.
10答案:解:(1)∵四边形ABCD是平行四边形,
∴AB=CD=m,AB∥CD.
∵CG=BC,
∴CG=BG,
∵AB∥CD,
∴.
∴,
∴.
(2)∵AB∥CD,
∴△ABE∽△FDE,
∴.
∴ 三角形ABE与三角形FDE的面积之比为9∶4.
11解:
12答案: (1)5, 10 (2)略 (3)或
13答案:
证明:(1)联结BD,∵点E在菱形ABCD的对角线AC上,∴∠ECB=∠ECD.
∵BC=CD,CE=CE,∴△BCE≌△DCD.∴∠EDC=∠EBC.
∵EB=EF,∴∠EBC=∠EFC.
∴∠EDC=∠EFC.
∵∠DGE=∠FGC,∴∠DGE∽△FGC.
∴∴.
(2)∠ADC=2∠FDC.
证明如下:∵∠DGF=∠EGC,∴△DGF∽△EGC.
∵EF⊥CD,DA=DC,∴∠DAC=∠DCA=∠DFG=90º–∠FDC.
∴∠ADC=180º–2∠DAC=180º–2(90º–∠FDC)=2∠FDC.
14(1)证明: ∵△ADF为等边三角形, ∴AF=AD,∠FAD=60°
A
B
C
D
F
E
G
∵∠DAB=90°,∠EAD=15°,AD=AB
∴∠FAE=∠BAE=75°,AB=AF
∵AE为公共边 ∴△FAE≌△BAE
∴EF=EB
(2)如图,连结EC
∵在等边三角形△ADF中,∴FD=FA
∵∠EAD=∠EDA=15°,∴ED=EA,
∴EF是AD的垂直平分线,则∠EFA=∠EFD=30°
由(1)△FAE≌△BAE知∠EBA=∠EFA=30°
∵∠FAE=∠BAE=75°,∴∠BEA=∠BAE=∠FEA=75°
∴BE=BA=6
∵∠FEA+∠BEA+∠GEB=180°,∴∠GEB=30°
∵∠ABC=60°,∴ ∠GBE=30°
∴GE=GB
∵点G是BC的中点
∴EG=CG
∵∠CGE=∠GEB+∠GBE=60°
∴△CEG为等边三角形, ∴∠CEG=60°
∴∠CEB=∠CEG+∠GEB=90°
图②
A
D
B
C
G
E
F
l
图①
A
D
B
C
H
G
E
F
l
图③
A
D
M
C
H
G
E
F
l
C
N
(H)
∴在Rt△CEB中,BC=2CE,BC=CE+BE
∴CE=,∴BC=
15答案:解:(1)cm,
是等边三角形.
又cm,
图②
A
(H)
B
C
G
E
F
l
图③
A
D
M
C
H
G
E
F
l
B
N
图②
A
D
B
C
G
E
F
l
K
45°
.
如图②作于点.
cm.
点到的距离为cm.
(2)
四边形是矩形.又
, 矩形是正方形.
18答案:
⑵当BC=AB时,四边形ABFC是菱形.
∵AB∥GF,AG∥BF,∴四边形ABFG是平行四边形.
∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∴BE=AB.
∵BE=CF,BC=AB,∴EF=AB.
∴AB=BF.∴四边形ABFG是菱形