• 359.23 KB
  • 2021-05-10 发布

山东烟台市中考数学试题含答案

  • 16页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
绝密★启用前 试卷类型:A ‎ 山东省烟台市二〇一七年初中学业水平考试 数学试题 ‎(试卷满分为120分,考试时间为120分钟)‎ 一、选择题(本大题共12小题,每小题3分,共36分)‎ ‎1.(3分)下列实数中的无理数是(  )‎ A. B.π C.0 D. ‎2.(3分)下列国旗图案是轴对称图形但不是中心对称图形的是(  )‎ A. B. C. D.‎ ‎3.(3分)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为(  )‎ A.4.6×109 B.46×108 C.0.46×1010 D.4.6×1010‎ ‎4.(3分)如图所示的工件,其俯视图是(  )‎ A. B. C. D.‎ ‎5.(3分)某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为(  )‎ A.48° B.40° C.30° D.24°‎ ‎6.(3分)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:‎ 则输出结果应为(  )‎ A. B. C. D. ‎7.(3分)用棋子摆出下列一组图形:‎ 按照这种规律摆下去,第n个图形用的棋子个数为(  )‎ A.3n B.6n C.3n+6 D.3n+3‎ ‎8.(3分)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是(  )‎ A.两地气温的平均数相同 B.甲地气温的中位数是6℃‎ C.乙地气温的众数是4℃ D.乙地气温相对比较稳定 ‎9.(3分)如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为(  )‎ A.π B.π C.π D.π ‎10.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m的值为(  )‎ A.﹣1或2 B.1或﹣2 C.﹣2 D.1‎ ‎11.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:‎ ‎①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.‎ 其中正确的是(  )‎ A.①④ B.②④ C.①②③ D.①②③④‎ ‎12.(3分)如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,≈1.414)(  )‎ A.34.14米 B.34.1米 C.35.7米 D.35.74米 ‎ ‎ 二、填空题(本大题共6小题,每小题3分,共18分)‎ ‎13.(3分)30×()﹣2+|﹣2|=   .‎ ‎14.(3分)在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=   .‎ ‎15.(3分)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,‎ 若输入x后程序操作仅进行了一次就停止,则x的取值范围是   .‎ ‎16.(3分)如图,在直角坐标系中,每个小方格的边长均为1,△AOB与△A′OB′是以原点O为位似中心的位似图形,且相似比为3:2,点A,B都在格点上,则点B′的坐标是   .‎ ‎17.(3分)如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为   .‎ ‎18.(3分)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD 沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为   .‎ ‎ ‎ 三、解答题(本大题共7小题,共66分)‎ ‎19.(6分)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.‎ ‎20.(8分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:‎ A.放下自我,彼此尊重; B.放下利益,彼此平衡;‎ C.放下性格,彼此成就; D.合理竞争,合作双赢.‎ 要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:‎ ‎ 观点 频数 ‎ 频率 ‎ ‎ A ‎ a ‎ 0.2‎ ‎ B ‎ 12‎ ‎ 0.24‎ ‎ C ‎ 8‎ ‎ b ‎ D ‎ 20‎ ‎ 0.4‎ ‎(1)参加本次讨论的学生共有   人;‎ ‎(2)表中a=   ,b=   ;‎ ‎(3)将条形统计图补充完整;‎ ‎(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.‎ ‎21.(9分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用,经调查,该品牌足球2015年单价为200元,2017年单价为162元.‎ ‎(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;‎ ‎(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:‎ 试问去哪个商场购买足球更优惠?‎ ‎22.(9分)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度﹣20℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到﹣4℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至﹣20℃时,制冷再次停止,…,按照以上方式循环进行.‎ 同学们记录了44min内15个时间点冷柜中的温度y(℃)随时间x(min)的变化情况,制成下表:‎ ‎ 时间x/min ‎…‎ ‎ 4‎ ‎ 8‎ ‎10‎ ‎16‎ ‎20‎ ‎21‎ ‎22‎ ‎23‎ ‎24‎ ‎28‎ ‎30‎ ‎36‎ ‎40‎ ‎42‎ ‎44‎ ‎…‎ ‎ 温度y/℃‎ ‎…‎ ‎﹣20‎ ‎﹣10‎ ‎﹣8 ‎ ‎﹣5‎ ‎﹣4‎ ‎﹣8‎ ‎﹣12‎ ‎﹣16‎ ‎﹣20‎ ‎﹣10 ‎ ‎﹣8‎ ‎﹣5‎ ‎﹣4‎ ‎ a ‎﹣20‎ ‎…‎ ‎(1)通过分析发现,冷柜中的温度y是时间x的函数.‎ ‎①当4≤x<20时,写出一个符合表中数据的函数解析式   ;‎ ‎②当20≤x<24时,写出一个符合表中数据的函数解析式   ;‎ ‎(2)a的值为   ;‎ ‎(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当4≤x≤44时温度y随时间x变化的函数图象.‎ ‎23.(10分)【操作发现】‎ ‎(1)如图1,△ABC为等边三角形,现将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.‎ ‎①求∠EAF的度数;‎ ‎②DE与EF相等吗?请说明理由;‎ ‎【类比探究】‎ ‎(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF,请直接写出探究结果:‎ ‎①求∠EAF的度数;‎ ‎②线段AE,ED,DB之间的数量关系.‎ ‎24.(11分)如图,菱形ABCD中,对角线AC,BD相交于点O,AC=12cm,BD=16cm,动点N从点D出发,沿线段DB以2cm/s的速度向点B运动,同时动点M从点B出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随之停止,设运动时间为t(s)(t>0),以点M为圆心,MB长为半径的⊙M与射线BA,线段BD分别交于点E,F,连接EN.‎ ‎(1)求BF的长(用含有t的代数式表示),并求出t的取值范围;‎ ‎(2)当t为何值时,线段EN与⊙M相切?‎ ‎(3)若⊙M与线段EN只有一个公共点,求t的取值范围.‎ ‎25.(13分)如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.‎ ‎(1)求抛物线的解析式;‎ ‎(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;‎ ‎(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.‎ ‎ ‎ ‎2017年山东省烟台市中考数学试卷 参考答案与标准答案 ‎ ‎ 一、选择题(本大题共12小题,每小题3分,共36分)‎ ‎1-5.BAABD 6-10.CDCBD 11-12.CC 二、填空题(本大题共6小题,每小题3分,共18分)‎ ‎13.(3分)6‎ ‎14.(3分) ‎15.(3分)x<8‎ ‎16.(3分)(﹣2,)‎ ‎17.(3分)3‎ ‎18.(3分)36π﹣108‎ 三、解答题(本大题共7小题,共66分)‎ ‎19.(6分)解:(x﹣)÷ ‎= ‎= ‎=x﹣y,‎ 当x=,y=﹣1时,原式==1.‎ ‎20.(8分)解:(1)总人数=12÷0.24=50(人),‎ 故答案为:50;‎ ‎(2)a=50×0.2=10,b==0.16,‎ 故答案为:‎ ‎(3)条形统计图补充完整如图所示:‎ ‎(4)根据题意画出树状图如下:‎ 由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有4种,‎ 所以选中观点D(合理竞争,合作双赢)的概率==.‎ ‎21.(9分)解:(1)设2015年到2017年该品牌足球单价平均每年降低的百分率为x,‎ 根据题意得:200×(1﹣x)2=162,‎ 解得:x=0.1=10%或x=﹣1.9(舍去).‎ 答:2015年到2017年该品牌足球单价平均每年降低的百分率为10%.‎ ‎(2)100×=≈90.91(个),‎ 在A商城需要的费用为162×91=14742(元),‎ 在B商城需要的费用为162×100×=14580(元).‎ ‎14742>14580.‎ 答:去B商场购买足球更优惠.‎ ‎22.(9分)解:(1)①∵4×(﹣20)=﹣80,8×(﹣10)=﹣80,10×(﹣8)=﹣80,16×(﹣5)=﹣80,20×(﹣4)=﹣80,‎ ‎∴当4≤x<20时,y=﹣.‎ 故答案为:y=﹣.‎ ‎②当20≤x<24时,设y关于x的函数解析式为y=kx+b,‎ 将(20,﹣4)、(21,﹣8)代入y=kx+b中,‎ ,解得:,‎ ‎∴此时y=﹣4x+76.‎ 当x=22时,y=﹣4x+76=﹣12,‎ 当x=23时,y=﹣4x+76=﹣16,‎ 当x=24时,y=﹣4x+76=﹣20.‎ ‎∴当20≤x<24时,y=﹣4x+76.‎ 故答案为:y=﹣4x+76.‎ ‎(2)观察表格,可知该冷柜的工作周期为20分钟,‎ ‎∴当x=42时,与x=22时,y值相同,‎ ‎∴a=﹣12.‎ 故答案为:﹣12.‎ ‎(3)描点、连线,画出函数图象,如图所示.‎ ‎23.(10分)解:(1)①∵△ABC是等边三角形,‎ ‎∴AC=BC,∠BAC=∠B=60°,‎ ‎∵∠DCF=60°,‎ ‎∴∠ACF=∠BCD,‎ 在△ACF和△BCD中,,‎ ‎∴△ACF≌△BCD(SAS),‎ ‎∴∠CAF=∠B=60°,‎ ‎∴∠EAF=∠BAC+∠CAF=120°;‎ ‎②DE=EF;理由如下:‎ ‎∵∠DCF=60°,∠DCE=30°,‎ ‎∴∠FCE=60°﹣30°=30°,‎ ‎∴∠DCE=∠FCE,‎ 在△DCE和△FCE中,,‎ ‎∴△DCE≌△FCE(SAS),‎ ‎∴DE=EF;‎ ‎(2)①∵△ABC是等腰直角三角形,∠ACB=90°,‎ ‎∴AC=BC,∠BAC=∠B=45°,‎ ‎∵∠DCF=90°,‎ ‎∴∠ACF=∠BCD,‎ 在△ACF和△BCD中,,‎ ‎∴△ACF≌△BCD(SAS),‎ ‎∴∠CAF=∠B=45°,AF=DB,‎ ‎∴∠EAF=∠BAC+∠CAF=90°;‎ ‎②AE2+DB2=DE2,理由如下:‎ ‎∵∠DCF=90°,∠DCE=45°,‎ ‎∴∠FCE=90°﹣45°=45°,‎ ‎∴∠DCE=∠FCE,‎ 在△DCE和△FCE中,,‎ ‎∴△DCE≌△FCE(SAS),‎ ‎∴DE=EF,‎ 在Rt△AEF中,AE2+AF2=EF2,‎ 又∵AF=DB,‎ ‎∴AE2+DB2=DE2.‎ ‎24.(11分)解:(1)连接MF.‎ ‎∵四边形ABCD是菱形,‎ ‎∴AB=AD,AC⊥BD,OA=OC=6,OB=OD=8,‎ 在Rt△AOB中,AB==10,‎ ‎∵MB=MF,AB=AD,‎ ‎∴∠ABD=∠ADB=∠MFB,‎ ‎∴MF∥AD,‎ ‎∴=,‎ ‎∴=,‎ ‎∴BF=t(0<t≤8).‎ ‎(2)当线段EN与⊙M相切时,易知△BEN∽△BOA,‎ ‎∴=,‎ ‎∴=,‎ ‎∴t=.‎ ‎∴t=s时,线段EN与⊙M相切.‎ ‎(3)①由题意可知:当0<t≤时,⊙M与线段EN只有一个公共点.‎ ‎②当F与N重合时,则有t+2t=16,解得t=,‎ 关系图象可知,<t<8时,⊙M与线段EN只有一个公共点.‎ 综上所述,当0<t≤或<t<8时,⊙M与线段EN只有一个公共点.‎ ‎25.(13分)解:(1)∵矩形OBDC的边CD=1,‎ ‎∴OB=1,‎ ‎∵AB=4,‎ ‎∴OA=3,‎ ‎∴A(﹣3,0),B(1,0),‎ 把A、B两点坐标代入抛物线解析式可得,解得,‎ ‎∴抛物线解析式为y=﹣x2﹣x+2;‎ ‎(2)在y=﹣x2﹣x+2中,令y=2可得2=﹣x2﹣x+2,解得x=0或x=﹣2,‎ ‎∴E(﹣2,2),‎ ‎∴直线OE解析式为y=﹣x,‎ 由题意可得P(m,﹣m2﹣m+2),‎ ‎∵PG∥y轴,‎ ‎∴G(m,﹣m),‎ ‎∵P在直线OE的上方,‎ ‎∴PG=﹣m2﹣m+2﹣(﹣m)=﹣m2﹣m+2=﹣(m+)2+,‎ ‎∵直线OE解析式为y=﹣x,‎ ‎∴∠PGH=∠COE=45°,‎ ‎∴l=PG=[﹣(m+)2+]=﹣(m+)2+,‎ ‎∴当m=﹣时,l有最大值,最大值为;‎ ‎(3)①当AC为平行四边形的边时,则有MN∥AC,且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L,‎ 则∠ALF=∠ACO=∠FNM,‎ 在△MFN和△AOC中 ‎∴△MFN≌△AOC(AAS),‎ ‎∴MF=AO=3,‎ ‎∴点M到对称轴的距离为3,‎ 又y=﹣x2﹣x+2,‎ ‎∴抛物线对称轴为x=﹣1,‎ 设M点坐标为(x,y),则|x+1|=3,解得x=2或x=﹣4,‎ 当x=2时,y=﹣,当x=﹣4时,y=,‎ ‎∴M点坐标为(2,﹣)或(﹣4,﹣);‎ ‎②当AC为对角线时,设AC的中点为K,‎ ‎∵A(﹣3,0),C(0,2),‎ ‎∴K(﹣,1),‎ ‎∵点N在对称轴上,‎ ‎∴点N的横坐标为﹣1,‎ 设M点横坐标为x,‎ ‎∴x+(﹣1)=2×(﹣)=﹣3,解得x=﹣2,此时y=2,‎ ‎∴M(﹣2,2);‎ 综上可知点M的坐标为(2,﹣)或(﹣4,﹣)或(﹣2,2).‎