• 75.50 KB
  • 2021-05-10 发布

中考数学压轴题——抛物线与面积角问题

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
抛物线与面积、角度问题 1. 如图,对称轴为x=1的抛物线经过A(-1,0),B(4,5)两点. (1)求抛物线的解析式; (2)P为直线AB上的动点,过点P作x轴的垂线交抛物线于点Q. ①当PQ=6时,求点P的坐标; ②是否存在点P,使以A、P、Q为顶点的三角形为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由. ‎ ‎ ‎ 2. 如图,已知抛物线y=-x2+bx+c与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB. (1)求该抛物线的解析式; (2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由. (3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由. ‎ ‎ ‎ ‎ 3.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H. (1)求抛物线的表达式; (2)直接写出点C的坐标,并求出△ABC的面积; (3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标; (4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积. ‎ ‎ ‎ 1. 如图,在平面直角坐标系中,抛物线y=ax2+bx-3(a≠0)与x轴交于点A(-2,0)、B(4,0)两点,与y轴交于点C. (1)求抛物线的解析式; (2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少? (3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标. ‎ ‎ ‎ ‎5.如图,抛物线y=ax2+bx+c的图象经过点A(-2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD. (1)求抛物线的函数表达式; (2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标; (3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长. ‎ ‎6.如图,抛物线y=ax2+bx-5(a≠0)经过点A(4,-5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D. (1)求这条抛物线的表达式; (2)连结AB、BC、CD、DA,求四边形ABCD的面积; (3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标. ‎