• 619.50 KB
  • 2021-05-10 发布

中考数学压轴题100题精选6170题答案

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2010年中考数学压轴题100题精选(61-70题)答案 ‎【061】解(1)A(,0),B(0,3) 2分(每对一个给1分)‎ ‎(2)满分3分.其中过F作出垂线1分,作出BF中垂线1分,找出圆心并画出⊙P给1分. (注:画垂线PF不用尺规作图的不扣分)‎ ‎(3)过点P作PD⊥轴于D,则PD=,BD=, 6分 y x O A B D P F PB=PF=,∵△BDP为直角三形,∴ ‎ ‎∴,即 即∴与的函数关系为 ‎(4)存在 解法1:∵⊙P与轴相切于点F,且与直线相切于点B ‎∴,∵,∴‎ ‎∵AF= , ∴,∴ 11分 把代入,得 ‎∴点P的坐标为(1,)或(9,15)12分 ‎【062】解:实践应用(1)2;.;.(2).‎ 拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周. ‎ 又∵三角形的外角和是360°,‎ ‎∴在三个顶点处,⊙O自转了(周). ‎ ‎∴⊙O共自转了(+1)周. ‎ ‎(2)+1.‎ ‎【063】(1)① 对称轴 (2分)‎ ‎② 当时,有,解之,得 ,‎ ‎∴ 点A的坐标为(,0). (4分)‎ ‎(2)满足条件的点P有3个,分别为(,3),(2,3),(,). (7分)‎ ‎(3)存在.当时, ∴ 点C的坐标为(0,3)‎ ‎∵ DE∥轴,AO3,EO2,AE1,CO3‎ ‎∴ ∽ ∴ 即 ∴ DE1 (9分)‎ ‎∴ 4‎ 在OE上找点F,使OF,此时2,直线CF把四边形DEOC 分成面积相等的两部分,交抛物线于点M. (10分)‎ 设直线CM的解析式为,它经过点.则 (11分)‎ 解之,得 ∴ 直线CM的解析式为 (12分)‎ B O A ‎·‎ x y 第28题图 P H ‎【064】解:(1)抛物线与y轴的交于点B,令x=0得y=2.‎ ‎∴B(0,2) ‎ ‎∵ ∴A(—2,3)‎ ‎(2)当点P是 AB的延长线与x轴交点时,‎ ‎.‎ 当点P在x轴上又异于AB的延长线与x轴的交点时,‎ 在点P、A、B构成的三角形中,.‎ 综合上述: ‎ ‎(3)作直线AB交x轴于点P,由(2)可知:当PA—PB最大时,点P是所求的点 8分 作AH⊥OP于H.∵BO⊥OP,∴△BOP∽△AHP ‎ ∴ 由(1)可知:AH=3、OH=2、OB=2,∴OP=4,故P(4,0) ‎ ‎【065】解:(1)∵AB是⊙O的直径(已知)‎ ‎ ∴∠ACB=90º(直径所对的圆周角是直角)‎ ‎ ∵∠ABC=60º(已知)‎ ‎ ∴∠BAC=180º-∠ACB-∠ABC= 30º(三角形的内角和等于180º)‎ ‎ ∴AB=2BC=‎4cm(直角三角形中,30º锐角所对的直角边等于斜边的一半)‎ ‎ 即⊙O的直径为‎4cm.‎ ‎(2)如图10(1)CD切⊙O于点C,连结OC,则OC=OB=1/2·AB=‎2cm.‎ ‎∴CD⊥CO(圆的切线垂直于经过切点的半径)‎ ‎∴∠OCD=90º(垂直的定义) ∵∠BAC= 30º(已求)‎ ‎∴∠COD=2∠BAC= 60º ∴∠D=180º-∠COD-∠OCD= 30º∴OD=2OC=‎4cm ∴BD=OD-OB=4-2=2(cm)‎ ‎ ∴当BD长为‎2cm,CD与⊙O相切.‎ ‎(3)根据题意得:‎ BE=(4-2t)cm,BF=tcm;‎ 如图10(2)当EF⊥BC时,△BEF为直角三角形,此时△BEF∽△BAC ‎∴BE:BA=BF:BC即:(4-2t):4=t:2解得:t=1‎ 如图10(3)当EF⊥BA时,△BEF为直角三角形,此时△BEF∽△BCA ‎∴BE:BC=BF:BA即:(4-2t):2=t:4解得:t=1.6‎ ‎∴当t=1s或t=1.6s时,△BEF为直角三角形.‎ ‎【066】(1)由得,代入反比例函数中,得 ‎∴反比例函数解析式为: 2分 解方程组由化简得:‎ ‎,所以 5分 ‎ (2)无论点在之间怎样滑动,与总能相似.因为两点纵坐标相等,所以轴.‎ 又因为轴,所以为直角三角形.‎ 同时也是直角三角形,‎ ‎ 8分 ‎(在理由中只要能说出轴,即可得分.)‎ ‎【067】(1)解:∵直角梯形 O A P D B Q C 当时,四边形 为平行四边形.‎ 由题意可知:‎ 当时,四边形为平行四边形. 3分 O A P D B Q C H E ‎(2)解:设与相切于点 过点作垂足为 直角梯形 由题意可知:‎ 为的直径,‎ 为的切线 ‎ 5分 在中,,‎ 即:,,‎ ‎,因为在边运动的时间为秒 而,(舍去),当秒时,与相切. 8分 ‎【068】解:(1)如图4,过B作 则 过Q作 则 ‎ (2分)‎ 要使四边形PABQ是等腰梯形,则,‎ 即 或(此时是平行四边形,不合题意,舍去) (3分)‎ ‎(2)当时,。‎ ‎ (4分)‎ ‎ (5分)‎ ‎ (6分)‎ ‎(3)①当时,则 ‎ (7分)‎ ‎②当时,‎ 即 (8分)‎ ‎③当时, (9分)‎ 综上,当时,△PQF是等腰三角形. (10分)‎ ‎【069】解 (1)易求得点的坐标为 由题设可知是方程即 的两根,‎ 所以,所 (1分)‎ 如图3,∵⊙P与轴的另一个交点为D,由于AB、CD是⊙P的两条相交弦,设它们的交点为点O,连结DB,∴△AOC∽△DOC,则 (2分)‎ 由题意知点在轴的负半轴上,从而点D在轴的正半轴上,‎ 所以点D的坐标为(0,1) (3分)‎ ‎(2)因为AB⊥CD, AB又恰好为⊙P的直径,则C、D关于点O对称,‎ 所以点的坐标为,即 (4分)‎ 又,‎ 所以解得 (6分)‎ ‎【070】解:(1)6.(2)8. (3分)‎ ‎(3)①当0时,‎ Q1‎ A B C D Q2‎ P3‎ Q3‎ E P2‎ P1‎ O ‎. (5分)‎ ‎②当3时,‎ ‎= (7分)‎ ‎③当时,设与交于点.‎ ‎(解法一)‎ 过作则为等边三角形.‎ ‎.‎ ‎. (10分)‎ ‎(解法二)‎ 如右图,过点作于点,,于点 过点作交延长线于点.‎ P3‎ O A B C D Q3‎ G H F 又 又 ‎ (10分)‎