- 619.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2010年中考数学压轴题100题精选(61-70题)答案
【061】解(1)A(,0),B(0,3) 2分(每对一个给1分)
(2)满分3分.其中过F作出垂线1分,作出BF中垂线1分,找出圆心并画出⊙P给1分. (注:画垂线PF不用尺规作图的不扣分)
(3)过点P作PD⊥轴于D,则PD=,BD=, 6分
y
x
O
A
B
D
P
F
PB=PF=,∵△BDP为直角三形,∴
∴,即
即∴与的函数关系为
(4)存在
解法1:∵⊙P与轴相切于点F,且与直线相切于点B
∴,∵,∴
∵AF= , ∴,∴ 11分
把代入,得
∴点P的坐标为(1,)或(9,15)12分
【062】解:实践应用(1)2;.;.(2).
拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.
又∵三角形的外角和是360°,
∴在三个顶点处,⊙O自转了(周).
∴⊙O共自转了(+1)周.
(2)+1.
【063】(1)① 对称轴 (2分)
② 当时,有,解之,得 ,
∴ 点A的坐标为(,0). (4分)
(2)满足条件的点P有3个,分别为(,3),(2,3),(,). (7分)
(3)存在.当时, ∴ 点C的坐标为(0,3)
∵ DE∥轴,AO3,EO2,AE1,CO3
∴ ∽ ∴ 即 ∴ DE1 (9分)
∴ 4
在OE上找点F,使OF,此时2,直线CF把四边形DEOC
分成面积相等的两部分,交抛物线于点M. (10分)
设直线CM的解析式为,它经过点.则 (11分)
解之,得 ∴ 直线CM的解析式为 (12分)
B
O
A
·
x
y
第28题图
P
H
【064】解:(1)抛物线与y轴的交于点B,令x=0得y=2.
∴B(0,2)
∵ ∴A(—2,3)
(2)当点P是 AB的延长线与x轴交点时,
.
当点P在x轴上又异于AB的延长线与x轴的交点时,
在点P、A、B构成的三角形中,.
综合上述:
(3)作直线AB交x轴于点P,由(2)可知:当PA—PB最大时,点P是所求的点 8分
作AH⊥OP于H.∵BO⊥OP,∴△BOP∽△AHP
∴ 由(1)可知:AH=3、OH=2、OB=2,∴OP=4,故P(4,0)
【065】解:(1)∵AB是⊙O的直径(已知)
∴∠ACB=90º(直径所对的圆周角是直角)
∵∠ABC=60º(已知)
∴∠BAC=180º-∠ACB-∠ABC= 30º(三角形的内角和等于180º)
∴AB=2BC=4cm(直角三角形中,30º锐角所对的直角边等于斜边的一半)
即⊙O的直径为4cm.
(2)如图10(1)CD切⊙O于点C,连结OC,则OC=OB=1/2·AB=2cm.
∴CD⊥CO(圆的切线垂直于经过切点的半径)
∴∠OCD=90º(垂直的定义) ∵∠BAC= 30º(已求)
∴∠COD=2∠BAC= 60º ∴∠D=180º-∠COD-∠OCD= 30º∴OD=2OC=4cm ∴BD=OD-OB=4-2=2(cm)
∴当BD长为2cm,CD与⊙O相切.
(3)根据题意得:
BE=(4-2t)cm,BF=tcm;
如图10(2)当EF⊥BC时,△BEF为直角三角形,此时△BEF∽△BAC
∴BE:BA=BF:BC即:(4-2t):4=t:2解得:t=1
如图10(3)当EF⊥BA时,△BEF为直角三角形,此时△BEF∽△BCA
∴BE:BC=BF:BA即:(4-2t):2=t:4解得:t=1.6
∴当t=1s或t=1.6s时,△BEF为直角三角形.
【066】(1)由得,代入反比例函数中,得
∴反比例函数解析式为: 2分
解方程组由化简得:
,所以 5分
(2)无论点在之间怎样滑动,与总能相似.因为两点纵坐标相等,所以轴.
又因为轴,所以为直角三角形.
同时也是直角三角形,
8分
(在理由中只要能说出轴,即可得分.)
【067】(1)解:∵直角梯形
O
A
P
D
B
Q
C
当时,四边形
为平行四边形.
由题意可知:
当时,四边形为平行四边形. 3分
O
A
P
D
B
Q
C
H
E
(2)解:设与相切于点
过点作垂足为
直角梯形
由题意可知:
为的直径,
为的切线
5分
在中,,
即:,,
,因为在边运动的时间为秒
而,(舍去),当秒时,与相切. 8分
【068】解:(1)如图4,过B作
则
过Q作
则
(2分)
要使四边形PABQ是等腰梯形,则,
即
或(此时是平行四边形,不合题意,舍去) (3分)
(2)当时,。
(4分)
(5分)
(6分)
(3)①当时,则
(7分)
②当时,
即 (8分)
③当时, (9分)
综上,当时,△PQF是等腰三角形. (10分)
【069】解 (1)易求得点的坐标为
由题设可知是方程即 的两根,
所以,所 (1分)
如图3,∵⊙P与轴的另一个交点为D,由于AB、CD是⊙P的两条相交弦,设它们的交点为点O,连结DB,∴△AOC∽△DOC,则 (2分)
由题意知点在轴的负半轴上,从而点D在轴的正半轴上,
所以点D的坐标为(0,1) (3分)
(2)因为AB⊥CD, AB又恰好为⊙P的直径,则C、D关于点O对称,
所以点的坐标为,即 (4分)
又,
所以解得 (6分)
【070】解:(1)6.(2)8. (3分)
(3)①当0时,
Q1
A
B
C
D
Q2
P3
Q3
E
P2
P1
O
. (5分)
②当3时,
= (7分)
③当时,设与交于点.
(解法一)
过作则为等边三角形.
.
. (10分)
(解法二)
如右图,过点作于点,,于点
过点作交延长线于点.
P3
O
A
B
C
D
Q3
G
H
F
又
又
(10分)