- 1.41 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年浙江省初中毕业升学考试(嘉兴卷)数学试题卷
第Ⅰ卷(共30分)
一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.的绝对值为( )
A. B. C. D.
2.长度分别为,,的三条线段能组成一个三角形,的值可以是( )
A. B. C. D.
3.已知一组数据,,的平均数为,方差为,那么数据,,的平均数和方差分别是( )
A., B., C., D.,
4.一个正方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )
A.中 B.考 C.顺 D.利
5.红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )
A.红红不是胜就是输,所以红红胜的概率为
B.红红胜或娜娜胜的概率相等
C.两人出相同手势的概率为
D.娜娜胜的概率和两人出相同手势的概率一样
6.若二元一次方程组的解为则( )
A. B. C. D.
7.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是( )
A.向左平移1个单位,再向下平移1个单位
B.向左平移个单位,再向上平移1个单位
C.向右平移个单位,再向上平移1个单位
D.向右平移1个单位,再向上平移1个单位
8.用配方法解方程时,配方结果正确的是( )
A. B. C. D.
9.一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段长为( )
A. B. C. D.
10.下列关于函数的四个命题:①当时,有最小值10;②为任意实数,时的函数值大于时的函数值;③若,且是整数,当时,的整数值有个;④若函数图象过点和,其中,,则.其中真命题的序号是( )
A.① B.② C.③ D.④
第Ⅱ卷(共90分)
二、填空题(每题4分,满分24分,将答案填在答题纸上)
11.分解因式: .
12.若分式的值为0,则的值为 .
13.如图,小明自制一块乒乓球拍,正面是半径为的,,弓形(阴影部分)粘贴胶皮,则胶皮面积为 .
14.七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是 .
15.如图,把个边长为1的正方形拼接成一排,求得,,,计算 ,……按此规律,写出 (用含的代数式表示).
16.一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点,此时线段的长是 .现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长共为 .(结果保留根号)
三、解答题 (本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤.)
17.(1)计算:;
(2)化简:.
18.小明解不等式的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.
19.如图,已知,.
(1)在图中,用尺规作出的内切圆,并标出与边,,的切点,,(保留痕迹,不必写作法);
(2)连接,,求的度数.
20.如图,一次函数()与反比例函数()的图象交于点,.
(1)求这两个函数的表达式;
(2)在轴上是否存在点,使为等腰三角形?若存在,求的值;若不存在,说明理由.
21.小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计.当地去年每月的平均气温如图1,小明家去年月用电量如图2.
根据统计表,回答问题:
(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?
(2)请简单描述月用电量与气温之间的关系;
(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由.
22.如图是小强洗漱时的侧面示意图,洗漱台(矩形)靠墙摆放,高,宽,小强身高,下半身,洗漱时下半身与地面成(),身体前倾成(),脚与洗漱台距离(点,,,在同一直线上).
(1)此时小强头部点与地面相距多少?
(2)小强希望他的头部恰好在洗漱盆的中点的正上方,他应向前或后退多少?
(,,,结果精确到)
23.如图,是的中线,是线段上一点(不与点重合).交于点,,连结.
(1)如图1,当点与重合时,求证:四边形是平行四边形;
(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长交于点,若,且.
①求的度数;
②当,时,求的长.
24.如图,某日的钱塘江观潮信息如表:
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离(千米)与时间(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点,点坐标为,曲线可用二次函数(,是常数)刻画.
(1)求的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度,是加速前的速度).