- 524.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年辽宁省葫芦岛市中考数学试卷
一、选择题(本题共10小题,每小题3分,共30分)
1.(3分)(2016•葫芦岛)4的相反数是( )
A.4 B.﹣4 C. D.
2.(3分)(2016•葫芦岛)下列运算正确的是( )
A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2÷a2b=4ab C.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣1
3.(3分)(2016•葫芦岛)下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.(3分)(2016•葫芦岛)如图是由5个相同的小正方体构成的几何体,其左视图是( )
A. B. C. D.
5.(3分)(2016•葫芦岛)九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的( )
A.方差 B.众数 C.平均数 D.中位数
6.(3分)(2016•葫芦岛)下列一元二次方程中有两个相等实数根的是( )
A.2x2﹣6x+1=0 B.3x2﹣x﹣5=0 C.x2+x=0 D.x2﹣4x+4=0
7.(3分)(2016•葫芦岛)在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为( )
A.2 B.3 C.4 D.12
8.(3分)(2016•葫芦岛)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为( )
A.= B.=
C.= D.=
9.(3分)(2016•葫芦岛)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )
A.4 B.8 C.2 D.4
10.(3分)(2016•葫芦岛)甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有( )
①甲车的速度为50km/h ②乙车用了3h到达B城
③甲车出发4h时,乙车追上甲车 ④乙车出发后经过1h或3h两车相距50km.
A.1个 B.2个 C.3个 D.4个
二、填空题(本题共8小题,每小题3分,共24分)
11.(3分)(2016•葫芦岛)在“2016丝绸之路”国际投资贸易洽谈会上,我省销售的产品和合作项目签约金额为730000000元,将730000000用科学记数法表示为______.
12.(3分)(2016•葫芦岛)分解因式:a3﹣4a=______.
13.(3分)(2016•葫芦岛)某广告公司全体员工年薪的具体情况如表:
年薪/万元
25
15
10
6
4
人数
1
1
3
3
2
则该公司全体员工年薪的中位数是______万元.
14.(3分)(2016•葫芦岛)如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为______.
15.(3分)(2016•葫芦岛)如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD=______度.
16.(3分)(2016•葫芦岛)如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为______.
17.(3分)(2016•葫芦岛)如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为______.
18.(3分)(2016•葫芦岛)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y=x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和y=x于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△AnBnCn的面积为______.(用含正整数n的代数式表示)
三、解答题(第19小题10分,第20-25小题各12分,第26小题14分,共96分)
19.(10分)(2016•葫芦岛)先化简:(2x﹣)÷,然后从0,1,﹣2中选择一个适当的数作为x的值代入求值.
20.(12分)(2016•葫芦岛)某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有______人,在扇形统计图中,m的值是______;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
21.(12分)(2016•葫芦岛)在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.
(1)求甲、乙两种门票每张各多少元?
(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?
22.(12分)(2016•葫芦岛)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732)
23.(12分)(2016•葫芦岛)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.
(1)求证:DF是⊙O的切线;
(2)若CF=1,DF=,求图中阴影部分的面积.
24.(12分)(2016•葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
25.(12分)(2016•葫芦岛)如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系______;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
26.(14分)(2016•葫芦岛)如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(1)求抛物线的解析式及点D的坐标;
(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.
2016年辽宁省葫芦岛市中考数学试卷
参考答案与试题解析
一、选择题(本题共10小题,每小题3分,共30分)
1.(3分)(2016•葫芦岛)4的相反数是( )
A.4 B.﹣4 C. D.
【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.
【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.
故选:B.
2.(3分)(2016•葫芦岛)下列运算正确的是( )
A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2÷a2b=4ab C.2ab•3a=6a2b D.(a﹣1)(1﹣a)=a2﹣1
【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;
B、原式先计算乘方运算,再计算除法运算得到结果,即可作出判断;
C、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;
D、原式变形后,利用完全平方公式化简得到结果,即可作出判断.
【解答】解:A、原式=﹣a2+ab,错误;
B、原式=4a2b2÷a2b=4b,错误;
C、原式=6a2b,正确;
D、原式=﹣(a﹣1)2=﹣a2+2a﹣1,错误,
故选C
3.(3分)(2016•葫芦岛)下列图形既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【分析】根据轴对称图形和中心对称图形的概念求解,由于圆既是轴对称又是中心对称图形,故只考虑圆内图形的对称性即可.
【解答】解:A、既是轴对称图形,不是中心对称图形;
B、既是轴对称图形,又是中心对称图形;
C、不是轴对称图形,是中心对称图形;
D、只是轴对称图形,不是中心对称图形.
故选B.
4.(3分)(2016•葫芦岛)如图是由5个相同的小正方体构成的几何体,其左视图是( )
A. B. C. D.
【分析】几何体的左视图有2列,每列小正方形数目分别为2,1;据此画出图形即可求解.
【解答】解:观察图形可知,如图是由5个相同的小正方体构成的几何体,其左视图是.
故选:C.
5.(3分)(2016•葫芦岛)九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的( )
A.方差 B.众数 C.平均数 D.中位数
【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这2名学生立定跳远成绩的方差.
【解答】解:由于方差能反映数据的稳定性,需要比较这2名学生立定跳远成绩的方差.
故选:A.
6.(3分)(2016•葫芦岛)下列一元二次方程中有两个相等实数根的是( )
A.2x2﹣6x+1=0 B.3x2﹣x﹣5=0 C.x2+x=0 D.x2﹣4x+4=0
【分析】由根的判别式为△=b2﹣4ac,挨个计算四个选项中的△值,由此即可得出结论.
【解答】解:A、∵△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,
∴该方程有两个不相等的实数根;
B、∵△=b2﹣4ac=(﹣1)2﹣4×3×(﹣5)=61>0,
∴该方程有两个不相等的实数根;
C、∵△=b2﹣4ac=12﹣4×1×0=1>0,
∴该方程有两个不相等的实数根;
D、∵△=b2﹣4ac=(﹣4)2﹣4×1×4=0,
∴该方程有两个相等的实数根.
故选D.
7.(3分)(2016•葫芦岛)在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为( )
A.2 B.3 C.4 D.12
【分析】首先设袋中白球的个数为x个,然后根据概率公式,可得:=,解此分式方程即可求得答案.
【解答】解:设袋中白球的个数为x个,
根据题意得:=,
解得:x=3.
经检验:x=3是原分式方程的解.
∴袋中白球的个数为3个.
故选B.
8.(3分)(2016•葫芦岛)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为( )
A.= B.=
C.= D.=
【分析】根据A、B两种机器人每小时搬运化工原料间的关系可得出A型机器人每小时搬运化工原料(x+40)千克,再根据A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等即可列出关于x的分式方程,由此即可得出结论.
【解答】解:设B型机器人每小时搬运化工原料x千克,则A型机器人每小时搬运化工原料(x+40)千克,
∵A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等,
∴=.
故选A.
9.(3分)(2016•葫芦岛)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )
A.4 B.8 C.2 D.4
【分析】先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.
【解答】解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=4,
∴AB=2DF=8,
∵AD=DB,AE=EC,
∴DE∥BC,
∴∠ADE=∠ABF=30°,
∴AF=AB=4,
∴BF===4.
故选D.
10.(3分)(2016•葫芦岛)甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有( )
①甲车的速度为50km/h ②乙车用了3h到达B城
③甲车出发4h时,乙车追上甲车 ④乙车出发后经过1h或3h两车相距50km.
A.1个 B.2个 C.3个 D.4个
【分析】根据路程、时间和速度之间的关系判断出①正确;
根据函数图象上的数据得出乙车到达B城用的时间,判断出②正确;
根据甲的速度和走的时间得出甲车出发4h时走的总路程,再根据乙的总路程和所走的总时间求出乙的速度,再乘以2小时,求出甲车出发4h时,乙走的总路程,从而判断出③正确;
再根据速度×时间=总路程,即可判断出乙车出发后经过1h或3h,两车相距的距离,从而判断出④正确.
【解答】解:①甲车的速度为=50km/h,故本选项正确;
②乙车到达B城用的时间为:5﹣2=3h,故本选项正确;
③甲车出发4h,所走路程是:50×4=200(km),甲车出发4h时,乙走的路程是:×2=200(km),则乙车追上甲车,
故本选项正确;
④当乙车出发1h时,两车相距:50×3﹣100=50(km),
当乙车出发3h时,两车相距:100×3﹣50×5=50(km),
故本选项正确;
故选D.
二、填空题(本题共8小题,每小题3分,共24分)
11.(3分)(2016•葫芦岛)在“2016丝绸之路”国际投资贸易洽谈会上,我省销售的产品和合作项目签约金额为730000000元,将730000000用科学记数法表示为 7.3×108 .
【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:730000000用科学记数法表示为:7.3×108.
故答案为:7.3×108.
12.(3分)(2016•葫芦岛)分解因式:a3﹣4a= a(a+2)(a﹣2) .
【分析】原式提取a,再利用平方差公式分解即可.
【解答】解:原式=a(a2﹣4)
=a(a+2)(a﹣2).
故答案为:a(a+2)(a﹣2)
13.(3分)(2016•葫芦岛)某广告公司全体员工年薪的具体情况如表:
年薪/万元
25
15
10
6
4
人数
1
1
3
3
2
则该公司全体员工年薪的中位数是 8 万元.
【分析】根据中位数的定义进行解答即可.
【解答】解:∵共有1+1+3+3+2=10个人,
∴中位数是第5和第6个数的平均数,
∴中位数是(10+6)÷2=8(万元);
故答案为8.
14.(3分)(2016•葫芦岛)如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为 .
【分析】根据正方形的性质可得出“∠MBO=∠NCO=45°,OB=OC,∠BOC=90”,通过角的计算可得出∠MOB=∠NOC,由此即可证出△MOB≌△NOC,同理可得出△AOM≌△BON,从而可得知S阴影=S正方形ABCD,再根据几何概率的计算方法即可得出结论.
【解答】解:∵四边形ABCD为正方形,点O是对角线的交点,
∴∠MBO=∠NCO=45°,OB=OC,∠BOC=90°,
∵∠MON=90°,
∴∠MOB+∠BON=90°,∠BON+∠NOC=90°,
∴∠MOB=∠NOC.
在△MOB和△NOC中,有,
∴△MOB≌△NOC(ASA).
同理可得:△AOM≌△BON.
∴S阴影=S△BOC=S正方形ABCD.
∴蚂蚁停留在阴影区域的概率P==.
故答案为:.
15.(3分)(2016•葫芦岛)如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD= 140 度.
【分析】根据圆内接四边形对角互补和,同弧所对的圆心角是圆周角的二倍可以解答本题.
【解答】解:∵A,B,C,D是⊙O上的四个点,∠C=110°,
∴四边形ABCD是圆内接四边形,
∴∠C+∠A=180°,
∴∠A=70°,
∵∠BOD=2∠A,
∴∠BOD=140°,
故答案为:140.
16.(3分)(2016•葫芦岛)如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为 (0,) .
【分析】过D作DE⊥AC于E,根据矩形的性质和B的坐标求出OC=AB=3,OA=BC=4,∠CCOA=90°,求出OD=DE,根据勾股定理求出OA=AE=4,AC=5,在Rt△DEC中,根据勾股定理得出DE2+EC2=CD2,求出OD,即可得出答案.
【解答】解:过D作DE⊥AC于E,
∵四边形ABCO是矩形,B(4,3),
∴OC=AB=3,OA=BC=4,∠CCOA=90°,
∵AD平分∠OAC,
∴OD=DE,
由勾股定理得:OA2=AD2﹣OD2,AE2=AD2﹣DE2,
∴OA=AE=4,
由勾股定理得:AC==5,
在Rt△DEC中,DE2+EC2=CD2,
即OD2+(5﹣4)2=(3﹣OD)2,
解得:OD=,
所以D的坐标为(0,),
故答案为:(0,).
17.(3分)(2016•葫芦岛)如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为 ﹣8 .
【分析】根据∠AOB=90°,先过点A作AC⊥x轴,过点B作BD⊥x轴,构造相似三角形,再利用相似三角形的对应边成比例,列出比例式进行计算,求得点B的坐标,进而得出k的值.
【解答】解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,
∴∠DBO+∠BOD=90°,
∵∠AOB=90°,
∴∠AOC+∠BOD=90°,
∴∠DBO=∠AOC,
∴△DBO∽△COA,
∴,
∵点A的坐标为(2,1),
∴AC=1,OC=2,
∴AO==,
∴,即BD=4,DO=2,
∴B(﹣2,4),
∵反比例函数y=的图象经过点B,
∴k的值为﹣2×4=﹣8.
故答案为:﹣8
18.(3分)(2016•葫芦岛)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y=x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和y=x于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△AnBnCn的面积为 .(用含正整数n的代数式表示)
【分析】先根据点A1的坐标以及A1B1∥y轴,求得B1的坐标,进而得到A1B1的长以及△A1B1C1面积,再根据A2的坐标以及A2B2∥y轴,求得B2的坐标,进而得到A2B2的长以及△A2B2C2面积,最后根据根据变换规律,求得AnBn的长,进而得出△AnBnCn的面积即可.
【解答】解:∵点A1(2,2),A1B1∥y轴交直线y=x于点B1,
∴B1(2,1)
∴A1B1=2﹣1=1,即△A1B1C1面积=×12=;
∵A1C1=A1B1=1,
∴A2(3,3),
又∵A2B2∥y轴,交直线y=x于点B2,
∴B2(3,),
∴A2B2=3﹣=,即△A2B2C2面积=×()2=;
以此类推,
A3B3=,即△A3B3C3面积=×()2=;
A4B4=,即△A4B4C4面积=×()2=;
…
∴AnBn=()n﹣1,即△AnBnCn的面积=×[()n﹣1]2=.
故答案为:
三、解答题(第19小题10分,第20-25小题各12分,第26小题14分,共96分)
19.(10分)(2016•葫芦岛)先化简:(2x﹣)÷,然后从0,1,﹣2中选择一个适当的数作为x的值代入求值.
【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.
【解答】解:原式=(﹣)÷
=•
=,
当x=﹣2时,原式==.
20.(12分)(2016•葫芦岛)某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有 50 人,在扇形统计图中,m的值是 30% ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
【分析】(1)首先用选舞蹈课的人数除以它占本次调查的学生总人数的百分率,求出本次调查的学生共有多少人;然后用选乐器课的人数除以本次调查的学生总人数,求出在扇形统计图中,m的值是多少即可;
(2)首先用本次调查的学生总人数乘参加绘画课、书法课的人数占总人数的百分率,求出参加绘画课、书法课的人数各是多少;然后根据参加绘画课、书法课的人数,将条形统计图补充完整即可;
(3)首先判断出在被调查的学生中,选修书法的有3名男同学,2名女同学,然后应用列表法,写出所抽取的2名同学恰好是1名男同学和1名女同学的概率是多少即可.
【解答】解:(1)20÷40%=50(人)
15÷50=30%
答:本次调查的学生共有50人,在扇形统计图中,m的值是30%.
(2)50×20%=10(人)
50×10%=5(人)
.
(3)∵5﹣2=3(名),
∴选修书法的5名同学中,有3名男同学,2名女同学,
男
男
男
女
女
男
/
(男,男)
(男,男)
(男,女)
(男,女)
男
(男,男)
/
(男,男)
(男,女)
(男,女)
男
(男,男)
(男,男)
/
(男,女)
(男,女)
女
(女,男)
(女,男)
(女,男)
/
(女,女)
女
(女,男)
(女,男)
(女,男)
(女,女)
/
所有等可能的情况有20种,所抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,
则P(一男一女)==
答:所抽取的2名同学恰好是1名男同学和1名女同学的概率是.
故答案为:50、30%.
21.(12分)(2016•葫芦岛)在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.
(1)求甲、乙两种门票每张各多少元?
(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?
【分析】(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据“买甲种票10张,乙种票15张共用去660元”列方程即可求解;
(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据购票费用不超过1000元列出不等式即可求解.
【解答】解:(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据题意得
10(x+6)+15x=660,
解得x=24.
答:甲、乙两种门票每张各30元、24元;
(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据题意得
30y+24(35﹣y)≤1000,
解得y≤26.
答:最多可购买26张甲种票.
22.(12分)(2016•葫芦岛)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732)
【分析】过点A作AD⊥BC,交BC延长线于点D,根据∠ABC=30°、∠CBA=15°求得∠CAD=45°,RT△ACD中由AC=200米知AD=ACcos∠CAD,再根据AB=可得答案.
【解答】解:过点A作AD⊥BC,交BC延长线于点D,
∵∠B=30°,
∴∠BAD=60°,
又∵∠BAC=15°,
∴∠CAD=45°,
在RT△ACD中,∵AC=200米,
∴AD=ACcos∠CAD=200×=100(米),
∴AB===200≈283(米),
答:A,B两个凉亭之间的距离约为283米.
23.(12分)(2016•葫芦岛)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.
(1)求证:DF是⊙O的切线;
(2)若CF=1,DF=,求图中阴影部分的面积.
【分析】(1)连接AD、OD,由AB为直径可得出点D为BC的中点,由此得出OD为△BAC的中位线,再根据中位线的性质即可得出OD⊥DF,从而证出DF是⊙O的切线;
(2)CF=1,DF=,通过解直角三角形得出CD=2、∠C=60°,从而得出△ABC为等边三角形,再利用分割图形求面积法即可得出阴影部分的面积.
【解答】(1)证明:连接AD、OD,如图所示.
∵AB为直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AC=AB,
∴点D为线段BC的中点.
∵点O为AB的中点,
∴OD为△BAC的中位线,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线.
(2)解:在Rt△CFD中,CF=1,DF=,
∴tan∠C==,CD=2,
∴∠C=60°,
∵AC=AB,
∴△ABC为等边三角形,
∴AB=4.
∵OD∥AC,
∴∠DOG=∠BAC=60°,
∴DG=OD•tan∠DOG=2,
∴S阴影=S△ODG﹣S扇形OBD=DG•OD﹣πOB2=2﹣π.
24.(12分)(2016•葫芦岛)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
【分析】(1)设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;
(2)根据题意结合销量×每本的利润=150,进而求出答案;
(3)根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案.
【解答】解:(1)设y=kx+b,
把(22,36)与(24,32)代入得:,
解得:,
则y=﹣2x+80;
(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,
根据题意得:(x﹣20)y=150,
则(x﹣20)(﹣2x+80)=150,
整理得:x2﹣60x+875=0,
(x﹣25)(x﹣35)=0,
解得:x1=25,x2=35(不合题意舍去),
答:每本纪念册的销售单价是25元;
(3)由题意可得:
w=(x﹣20)(﹣2x+80)
=﹣2x2+120x﹣1600
=﹣2(x﹣30)2+200,
此时当x=30时,w最大,
又∵售价不低于20元且不高于28元,
∴x<30时,y随x的增大而增大,即当x=28时,w最大=﹣2(28﹣30)2+200=192(元),
答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.
25.(12分)(2016•葫芦岛)如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系 AF=AE ;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.
【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.
(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.
(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.
【解答】解:(1)如图①中,结论:AF=AE.
理由:∵四边形ABFD是平行四边形,
∴AB=DF,
∵AB=AC,
∴AC=DF,
∵DE=EC,
∴AE=EF,
∵∠DEC=∠AEF=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
故答案为AF=AE.
(2)如图②中,结论:AF=AE.
理由:连接EF,DF交BC于K.
∵四边形ABFD是平行四边形,
∴AB∥DF,
∴∠DKE=∠ABC=45°,
∴EKF=180°﹣∠DKE=135°,
∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,
∴∠EKF=∠ADE,
∵∠DKC=∠C,
∴DK=DC,
∵DF=AB=AC,
∴KF=AD,
在△EKF和△EDA中,
,
∴△EKF≌△EDA,
∴EF=EA,∠KEF=∠AED,
∴∠FEA=∠BED=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
(3)如图③中,结论不变,AF=AE.
理由:连接EF,延长FD交AC于K.
∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,
∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,
∴∠EDF=∠ACE,
∵DF=AB,AB=AC,
∴DF=AC
在△EDF和△ECA中,
,
∴△EDF≌△ECA,
∴EF=EA,∠FED=∠AEC,
∴∠FEA=∠DEC=90°,
∴△AEF是等腰直角三角形,
∴AF=AE.
26.(14分)(2016•葫芦岛)如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.
(1)求抛物线的解析式及点D的坐标;
(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.
【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;
(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF的解析式,联立直线BF和抛物线的解析式成方程组,解方程组即可求出点F的坐标;
(3)设对角线MN、PQ交于点O′,如图2所示.根据抛物线的对称性结合正方形的性质可得出点P、Q的位置,设出点Q的坐标为(2,2n),由正方形的性质可得出点M的坐标为(2﹣n,n).由点M在抛物线图象上,即可得出关于n的一元二次方程,解方程可求出n值,代入点Q的坐标即可得出结论.
【解答】解:(1)将点B(6,0)、C(0,6)代入y=﹣x2+bx+c中,
得:,解得:,
∴抛物线的解析式为y=﹣x2+2x+6.
∵y=﹣x2+2x+6=﹣(x﹣2)2+8,
∴点D的坐标为(2,8).
(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.
∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,
∴△F′BO∽△BDE,
∴.
∵点B(6,0),点D(2,8),
∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,
∴OF′=•OB=3,
∴点F′(0,3)或(0,﹣3).
设直线BF的解析式为y=kx±3,
则有0=6k+3或0=6k﹣3,
解得:k=﹣或k=,
∴直线BF的解析式为y=﹣x+3或y=x﹣3.
联立直线BF与抛物线的解析式得:①或②,
解方程组①得:或(舍去),
∴点F的坐标为(﹣1,);
解方程组②得:或(舍去),
∴点F的坐标为(﹣3,﹣).
综上可知:点F的坐标为(﹣1,)或(﹣3,﹣).
(3)设对角线MN、PQ交于点O′,如图2所示.
∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,
∴点P为抛物线对称轴与x轴的交点,点Q在抛物线对称轴上,
设点Q的坐标为(2,2n),则点M的坐标为(2﹣n,n).
∵点M在抛物线y=﹣x2+2x+6的图象上,
∴n=﹣+2(2﹣n)+6,即n2+2n﹣16=0,
解得:n1=﹣1,n2=﹣﹣1.
∴点Q的坐标为(2,2﹣2)或(2,﹣2﹣2).
参与本试卷答题和审题的老师有:智波;cook2360;sks;wdzyzmsy@126.com;HJJ;三界无我;曹先生;zcx;弯弯的小河;lantin;gbl210;HLing;zgm666;zjx111;szl;放飞梦想(排名不分先后)
菁优网
2016年9月21日