- 300.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。
(1)当点C在第一象限时,求证:△OPM≌△PCN;
(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;
A
B
C
N
P
M
O
x
y
x=1
第1题图
(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由。
说明:
l 考查字母运算能力
l 分类讨论思想,取值范围内解的有效性
l 方法多样化,易错点为用字母表示边长时,注意边长的非负性
2.关于x的二次函数y=-x2+(k2-4)x+2k-2以y轴为对称轴,且与y轴的交点在x轴上方.
(1)求此抛物线的解析式
(2)设A是y轴右侧抛物线上的一个动点,过点A作AB垂直x轴于点B,再过点A作x轴的平行线交抛物线于点D,过D点作DC垂直x轴于点C, 得到矩形ABCD.设矩形ABCD的周长为C,点A的横坐标为x,试求C关于x的函数关系式;
第2题图
A1
A2
B1
B2
C1
D1
C2
D2
x
y
(3)当点A在y轴右侧的抛物线上运动时,矩形ABCD能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.
说明:
l 考查字母运算能力
l 分类讨论思想,取值范围内解的有效性
l 方法多样化,易错点为用字母表示边长时,注意边长的非负性
3.如图所示, 在平面直角坐标系xoy中, 矩形OABC的边长OA、OC分别为12cm、6cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=ax2+bx+c经过点A、B, 且18a + c = 0.
(1)求抛物线的解析式.
第3题图
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动, 同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时, 设△PBQ的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.
②当S取得最大值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在, 求出R点的坐标, 如果不存在, 请说明理由.
说明:
l 图形必须准确,存在性问题如果不会做,可通过画图判断(答存在得分的机会大得多)
4.已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P
与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
说明:
l 考查画图能力和字母运算能力
l 分类讨论思想,取值范围内解的有效性
l 方法多样化,易错点为用字母表示边长时,注意边长的非负性
第5题图
5.如图示已知点M的坐标为(4,0),
以M为圆心,以2为半径的圆交x轴于A、B,抛物线
过A、B两点且与y轴交于点C.
(1)求点C的坐标并画出抛物线的大致图象
(2)过C点作⊙M的切线CE,求直线OE的解析式.
说明:
l 图形必须准确,画切线后巧妙解法是利用两直线平行,K相等
l 易错点为漏解(过圆外一点作圆的切线有两条)
l 两直线垂直,K互为负倒数可以使用
6.如图,在中,∠°,, 的面积为,点为边上的任意一点(不与、重合),过点作∥,交于点.设以为折线将△翻折,所得的与梯形重叠部分的面积记为y.
(1).用x表示∆ADE的面积;
(2).求出﹤≤时y与x的函数关系式;
(3).求出﹤﹤时y与x的函数关系式;
(4).当取何值时,的值最大?最大值是多少?
说明:
l 考查画图能力和字母运算能力
l 分类讨论思想,取值范围内解的有效性
l 方法多样化,在设未知数或用字母表示未知量时,要充分发挥“勾股、相似、锐角三角函数”的作用,挖掘题目中的特殊角(特殊比值)来巧妙运算
7.在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A、B重合),过点M作MN∥BC交AC于点N. 以MN为直径作⊙O,并在⊙O内作内接矩形AMPN,令AM=x. 当x为何值时,⊙O与直线BC相切?
8.如图,直线和x轴y轴分别交与点B、A,点C是OA的中点,过点C向左方作射线CM⊥y轴,点D是线段OB上一动点,不和B重合,DP⊥CM于点P,DE⊥AB于点E,连接PE。
(1) 求A、B、C三点的坐标。
(2) 设点D的横坐标为x,△BED的面积为S,求S关于x的函数关系式。
(3) 是否存在点D,使△DPE为等腰三角形?若存在,请直接写出所有满足要求的x的值。
说明:
l 考查画图能力和字母运算能力,关键突破口在于“定值”,∠PDE恒等于∠ABO
l 分类讨论思想,取值范围内解的有效性
l 易错点为用字母表示边长时,注意边长的非负性
9.如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1)点A的坐标是__________,点C的坐标是__________;
(2)设△OMN的面积为S,求S与t的函数关系式;
(3)探求(2)中得到的函数S有没有最大值?若有,求出最大值;若没有,说明理由.
说明:
l 后续题目供老师们参考
l 是中数之窗下载的中考模拟压轴题
10.二次函数的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,l).
(1)试求,所满足的关系式;
(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积
的倍时,求a的值;
(3)是否存在实数a,使得△ABC为直角三角形.
若存在,请求出a的值;若不存在,请说明理由.
11.如图,在平面直角坐标系x0y中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点。抛物线
与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切与点A和点C。
(1)求抛物线的解析式;
(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;
(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由。
12.已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)
在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象。请你结合这个新的图像回答:当直线y=x+b 与此图象有两个公共点时,b的取值范围.
第16题图
A
B
C
O
x
y
13.如图,已知抛物线与轴交于点,,与轴交于点.
(1)求抛物线的解析式及其顶点的坐标;
(2)设直线交轴于点.在线段的垂直平分线上是否存在点,使得点到直线的距离等于点到原点的距离?如果存在,求出点
的坐标;如果不存在,请说明理由;
(3)过点作轴的垂线,交直线于点,将抛物线沿其对称轴平移,使抛物线与线段总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?
14.如图,经过x轴上A(-1,0)、B(3,0)两点的抛物线交y轴的正半轴于点C,设抛物线的顶点为D。
第18题
(1)用含a的代数式表示出点C、D的坐标;
(2)若,请确定抛物线的解析式;
(3)在(2)的条件下,能否在抛物线上找到另外的点Q,使△BDQ为直角三角形?如果能,请直接写出点Q的坐标,如不能,说明理由。
第20题
15.已知二次函数的图象是经过点A(1,0),B(3,0),E(0,6)三点的一条抛物线.
(1)求这条抛物线的解析式;
(2)如图,设抛物线的顶点为C,对称轴交x轴于点D,在y轴正半轴上有一点P,且以A、O、P为顶点的三角形与△ACD相似,求P点的坐标.
16.如图10,在平面直角坐标系中,二次函数的图象的顶点为D点,
与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),
OB=OC ,tan∠ACO=.
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
_
y
_
x
_
O
_
E
_
D
_
C
_
B
_
A
图10
_
G
_
A
_
B
_
C
_
D
_
O
_
x
_
y
图11
(4)如图11,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.