• 744.50 KB
  • 2021-05-10 发布

成都中考B卷填空题专题训练

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
成都中考B卷填空题专题训练 ‎(数式系列)‎ ‎1.已知关于的方程的一个根为,则= _________.‎ ‎2.设x1、x2 是一元二次方程x2+4x-3=0的两个根,2x1(x22+5x2-3)+a =2,则a= .‎ ‎3.若实数m满足m2-m + 1 = 0,则 m4 + m-4 = .‎ ‎4、若x1,x2(x1<x2)是方程(x-a)(x-b)= 1(a<b)的两个根,则实数x1,x2,a,b的大小关系为 .‎ ‎(直线型几何系列)‎ ‎1、如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD = 3,BC = 9,则GO : BG = .‎ ‎2、如图,等腰梯形ABCD内接于半圆D,且AB = 1,BC = 2,则OA = .‎ ‎3、如图,一副三角板拼在一起,O为AD的中点,AB = a.将△ABO沿BO对折于△A′BO,M为BC上一动点,则A′M的最小值为 ‎ A O D B F K E ‎(第4题)图)‎ G M CK ‎4、如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点,以O为圆心,以OE为半径画弧EF.P是上的一个动点,连结OP,并延长OP交线段BC于点K,过点P作⊙O的切线,分别交射线AB于点M,交直线BC于点G. 若,则BK﹦ .‎ ‎45° ‎60° A′‎ B M A O D C G A B D C O C B A O D ‎(第1题) (第2题) (第3题) ‎ ‎(折叠、动态系列)‎ ‎1.小敏将一张直角边为l的等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得 到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得 到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为 ;同上操作,若小敏连续将图1的等腰直角三角形折叠N次后所得到 的等腰直角三角形(如图N+1)的一条腰长为 .‎ 第1次折叠 第3次折叠 第n 次折叠 ‎…‎ 第2次折叠 图1‎ 图2‎ 图3‎ 图n+1‎ ‎2、在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B‎1C1C;延长C1B1交x轴于点A2,作正方形A2B‎2C2C1…按这样的规律进行下去,第2010个正方形的面积为 .‎ ‎3、如图,将矩形纸片()的一角沿着过点的直线折叠,使点落在边上,落点为,折痕交边交于点.若,,则__________;若,则=_________(用含有、的代数式表示)‎ A B C D E F O A B C D A1‎ B1‎ C1‎ A2‎ C2‎ B2‎ x y ‎ (第2题) (第3题) ‎ ‎4、小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为 .‎ A B C D A B C D E F ‎①‎ ‎②‎ A B C D E G M N ‎③‎ ‎ ‎ ‎(一次函数与反比例系列)‎ y x D C A B O F E ‎1.如图,一次函数的图象与轴,轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作轴,轴的垂线,垂足为E,F,连接CF,DE.‎ 有下列四个结论:‎ ‎①△CEF与△DEF的面积相等; ②△AOB∽△FOE;‎ ‎③△DCE≌△CDF; ④.‎ 其中正确的结论是 .‎ ‎2.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx-2的解集是______________.‎ ‎3.如图,直线与y轴交于点A,与双曲线在第一象限交于B、C两点,且AB·AC=4,则k=_________.‎ B A O x y C B A O P y2=mx x y y1=kx+b ‎(第2题) (第3题) ‎ ‎(概率计算系列)‎ ‎1.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P落在抛物线y=-x2+2x+5与x轴所围成的区域内(不含边界)的概率是_____________.‎ ‎2.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖(如图),突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是 .‎ ‎3、平行四边形中,、是两条对角线,现从以下四个关系式 ① ,② ,③ ,④ 中,任取一个作为条件,即可推出平行四边形是菱形的概率为 ‎ ‎4.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为 .‎ ‎(规律探索系列)‎ ‎… ;‎ 图(1)‎ ‎1.图(1)是面积都为S的正边形(),图(2)是由图(1)中的每个正多边形分别对应“扩展”而来。如:图(2)中的A是由图(1)中的正三角形的每边长三等分,以居中的一条线段向外作正三角形,并把居中线段去掉而得到;图(2)中的B是由图(1)中的正四边形的每边长三等分,以居中的一条线段向外作正四边形,并把居中线段去掉而得到 … ,以此类推,当图(1)中的正多边形是正十边形时,图(2)中所有“扩展”后的图形面积和为248。则S的值是 。‎ ‎…‎ 图(2)‎ a b c d ‎2、如图,在平面直角坐标系中,边长为1的正方形OA1B‎1C的对角线A‎1C和OB1交于点M1;以M‎1A1为对角线作第二个正方形A‎2A1B‎2 M1,对角线A‎1 M1和A2B2 交于点M2;以M‎2A1为对角线作第三个正方形A‎3A1B‎3 M2‎,对角线A‎1 M2‎和A3B3 交于点M3;……,依次类推,这样作的第n个正方形对角线交点的坐标为____________.‎ A1‎ A3‎ A2‎ B1‎ B2‎ B3‎ M1‎ M2‎ M3‎ C O x y ‎3、将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.‎ 第1列 第2列 第3列 第4列 第1行 ‎1‎ ‎2‎ ‎3‎ 第2行 ‎6‎ ‎5‎ ‎4‎ 第3行 ‎7‎ ‎8‎ ‎9‎ 第4行 ‎12‎ ‎11‎ ‎10‎ ‎……‎ ‎★‎ ‎★ ★ ★‎ ‎★ ★ ★ ★ ★ ★‎ ‎★ ★ ★ ★ ★ ★ ★ ★ ★ ★‎ 第1个图形 第2个图形 第3个图形 第4个图形 ‎4、观察下面的图形,它们是按一定规律排列的,依照此规律,第 个图形共有 120个★.‎ ‎(圆系列)‎ ‎1.如第1题图,的正切值等于 。‎ ‎2.如第2题图,如果从半径为的圆形纸片剪去圆周的一个扇形,将留下在扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的体积是 。‎ ‎3.水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度(指缠绕中将部分带子拉成图中所示的平面ABCD时的∠ABC,其中AB为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则的余弦值为 .‎ ‎4、如图,扇形OAB,∠AOB=90,⊙P 与OA、OB分别相切于点F、E,并且与弧AB切于点C,y x O ‎1‎ 第1题图 则扇形OAB的面积与⊙P的面积比是 .‎ ‎ ‎ 第3题图 第2题图 剪去 ‎ 第4题图 ‎(二次函数系列)‎ ‎1.(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2= ;‎ ‎(2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t= .‎ ‎2.如图,已知⊙P的半径为2,圆心P在抛物线上运动,当⊙P与轴相切时,圆心P的坐标为___________。‎ ‎3. 已知二次函数的图象如图所示,有下列5个结论:‎ ‎① ;② ;③ ;④ ;⑤ ,(的实数)其中正确的结论有___________。‎ x O P y P y x ‎·‎ 第1题图 第2题图 第3题图 ‎(附:成都近三年中考B卷填空题)‎ ‎(10年)‎ ‎21.设,是一元二次方程的两个实数根,则的值为__________________.‎ ‎22.如图,在中,,,‎ ‎,动点从点开始沿边向以 的速度移动(不与点重合),动点从点 开始沿边向以的速度移动(不与点 重合).如果、分别从、同时出发,那么 经过_____________秒,四边形的面积最小.‎ ‎23.有背面完全相同,正面上分别标有两个连续自然数(其中)的卡片20张.小李将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,则该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为)不小于14的概率为_________________.‎ ‎24.已知是正整数,是反比例函数图象上的一列点,其中.记.若(是非零常数),则的值是________________________(用含和的代数式表示).‎ ‎25.如图,内接于,,‎ 是上与点关于圆心成中心对称的点,是 边上一点,连结.已知,‎ ‎,是线段上一动点,连结并延长交 四边形的一边于点,且满足,则 的值为_______________.‎ ‎(11年)‎ ‎21.在平面直角坐标系中,点P(2,)在正比例函数的图象上,则点Q()位于第______象限。‎ ‎22.某校在“爱护地球 绿化祖图”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:‎ 植树数量(单位:棵)‎ ‎4‎ ‎5‎ ‎6‎ ‎8‎ ‎10‎ 人数 ‎30‎ ‎22‎ ‎25‎ ‎15‎ ‎8‎ 则这l 00名同学平均每人植树 __________棵;若该校共有1 000名学生,请根据以上调查结果估计该校学生的植树总数是__________棵.‎ ‎23.设,,,…, ‎ 设,则S=_________ (用含n的代数式表示,其中n为正整数).‎ ‎24.在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8。过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线上的T处,折痕为MN.当点T在直线上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为_________ (计算结果不取近似值).‎ ‎25.在平面直角坐标系中,已知反比例函数满足:当时,y随x的增大而减小。若该反比例函数的图象与直线都经过点P,且,则实数k=_________.‎ ‎(12年)‎ ‎21.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为 _________ .‎ ‎22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为 _________  (结果保留π)‎ ‎23.有七张正面分别标有数字﹣3,﹣2,﹣1,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,O)的概率是 _________ .‎ ‎24.如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则= _________ . (用含m的代数式表示)‎ ‎25.如图,长方形纸片ABCD中,AB=‎8cm,AD=‎6cm,按下列步骤进行裁剪和拼图:‎ 第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);‎ 第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;‎ 第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)‎ 则拼成的这个四边形纸片的周长的最小值为 _________ cm,最大值为 _________ cm.‎